Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach

Energy ◽  
2016 ◽  
Vol 116 ◽  
pp. 265-280 ◽  
Author(s):  
Rafael Soria ◽  
André F.P. Lucena ◽  
Jan Tomaschek ◽  
Tobias Fichter ◽  
Thomas Haasz ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2943
Author(s):  
Cristina Prieto ◽  
Sonia Fereres ◽  
Luisa F. Cabeza

Industries with fast-developing technologies and knowledge-intensive business services rely on the development of scientific knowledge for their growth. This is also true in the renewable energy industry such as in concentrating solar power (CSP) plants, which have undergone intense development and expansion in the last two decades. Yet knowledge generation is not sufficient; its dissemination and internalization by the industry is indispensable for new product development. This paper contributes to providing empirical evidence on the known link between knowledge development and firm growth. In 10 years the cost of electricity produced through CSP has decreased five-fold. This decrease has only been possible due to innovation projects developed through a complex network of research and development (R&D) collaborations and intense investment, both public and (to a greater extent) private. The development and construction of pilot plants and demonstration facilities are shown to be key in maturing innovations for commercialization. This is an example of how the private sector is contributing to the decarbonisation of our energy system, contributing to the objectives of climate change mitigation.


Author(s):  
Robert Kunze ◽  
Steffi Schreiber

AbstractIn REFLEX ten different bottom-up simulation tools, fundamental energy system models, and approaches for life cycle assessment are coupled to a comprehensive Energy Models System. This Energy Models System allows an in–depth analysis and simultaneously a holistic evaluation of the development toward a low–carbon European energy system with focus on flexibility options up to the year 2050. Different variables are exchanged among the individual models within the Energy Models System. For a consistent analysis, relevant framework and scenario data need to be harmonized between the models.


2018 ◽  
Author(s):  
Rendy Silva Renata ◽  
Kentaro Kanatani ◽  
Hideharu Takahashi ◽  
Yutaka Tamaura ◽  
Hiroshige Kikura

2017 ◽  
Vol 8 (4) ◽  
pp. 1-19
Author(s):  
Oliveira Helio Marques de ◽  
◽  
Giacaglia Giorgio Eugenio Oscare ◽  

Author(s):  
D. T. Kitamura ◽  
K. P. Rocha ◽  
L. W. Oliveira ◽  
J. G. Oliveira ◽  
B. H. Dias ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


Sign in / Sign up

Export Citation Format

Share Document