Efficiency in Angolan thermal power plants: Evidence from cost structure and pollutant emissions

Energy ◽  
2017 ◽  
Vol 130 ◽  
pp. 129-143 ◽  
Author(s):  
Carlos Pestana Barros ◽  
Peter Wanke
Author(s):  
I. A Volchyn ◽  
L. S Haponych ◽  
W. Ja Przybylski

Purpose. Analysing the current state of sulfur dioxide and dust emissions from coal combustion at thermal power plants of Ukraine, predicting them with regard to changes which have occurred in the Ukrainian power industry over the last years, and estimating these emissions to compare with the limit gross emission values of pollutants according to the National Emissions Reduction Plan. Methodology. The method for calculating the pollutant emissions is elaborated, based on using the quantity of produced or supplied electricity for each year of TPP operation. Findings. It has been established that the gross emissions of SO2 at Ukrainian TPPs over the last years have amounted to about 620 thousand tons, and those of dust have made 140 thousand tons. In 2019, the average emission factors for all types of coal were 1180 g/GJ (for sulfur dioxide) and 288 g/GJ (for dust). The average values of specific emissions of SO2 and dust were 14.4 and 3.4g/kWh of supplied electricity, respectively, as compared with 1.2 and 0.2 g/kWh, which are characteristic of the current level at coal TPPs of the EU countries. Originality. Analytic dependency has been established between SO2 emission factors in flue gas at coal TPPs and low heat value and sulfur and ash content for Ukrainian energy coal. Practical value. The developed method allows one to perform calculations of maximum permissible and predicted gross emissions of SO2 and dust at TPPs of Ukraine.


Vestnik MGTU ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 190-201
Author(s):  
Marina Alexeevna Postevaya ◽  
Zakhar Ivanovich Slukovskii

The main sources of anthropogenic emissions into the atmosphere of Murmansk are emissions from thermal power plants and boiler houses operating on fuel oil. As a result of the analysis of the dynamics of pollutant emissions from stationary anthropogenic sources for the period 1997-2019 it has been established that the level of air pollution is assessed as low; there is a tendency towards a decrease in gross emissions from stationary sources. The main pollutants from thermal power plants are sulfur dioxide, nitrogen oxides, carbon monoxide, formaldehyde, and benzo(a)pyrene. Together with gaseous and liquid substances, fuel oil ash and products of incomplete underburning of fuel, which include heavy metals V, Ni, Cr, Pb, Fe, Sn, enter the atmospheric air. Technogenic compounds of heavy metals and other pollutants from the enterprises of the power unit, falling out with dust or precipitation on the surface and catchment areas of lakes, affect the formation of the chemical composition of surface soils, waters and bottom sediments of water bodies. This is reflected in an increase in the concentration of heavy metals (in particular, V and Ni) in the water and bottom sediments of the lakes of Murmansk in comparison with the background values.


2019 ◽  
Vol 12 (1) ◽  
pp. 22-28
Author(s):  
V. Ye. Mikhailov ◽  
S. P. Kolpakov ◽  
L. A. Khomenok ◽  
N. S. Shestakov

One of the most important issues for modern domestic power industry is the creation and further widespread introduction of solid propellant energy units for super-critical steam parameters with high efficiency (43–46%) and improved environmental parameters. This will significantly reduce the use of natural gas.At the same time, one of the major drawbacks of the operation of pulverized coal power units is the need to use a significant amount of fuel oil during start-up and shutdown of boilers to stabilize the burning of the coal torch in the variable boiler operating modes.In this regard, solid fuel TPPs need to be provided with fuel oil facilities, with all the associated problems to ensure the performance (heating of fuel oil in winter), reliability and safety. All of the above problems increase both the TPP capital construction costs, and the electricity generating cost.A practical solution to the above problems at present is the use of a plasma technology for coal torch ignition based on thermochemical preparation of fuel for combustion. The materials of the developments of JSC “NPO CKTI” on application of plasmatrons in boilers of thermal power plants at metallurgical complexes of the Russian Federation are also considered.Plasma ignition systems for solid fuels in boilers were developed by Russian specialists and were introduced at a number of coal-fi red power plants in the Russian Federation, Mongolia, North Korea, and Kazakhstan. Plasma ignition of solid fuels is widely used in China for almost 30% of power boilers.The introduction of plasma-energy technologies will improve the energy efficiency of domestic solid-fuel thermal power plants and can be widely implemented in the modernization of boilers.During the construction of new TPPs, the construction of fuel oil facilities can be abandoned altogether, which will reduce the capital costs of the construction of thermal power plants, reduce the construction footprint, and increase the TPP safety.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


Sign in / Sign up

Export Citation Format

Share Document