Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm

Energy ◽  
2017 ◽  
Vol 131 ◽  
pp. 297-311 ◽  
Author(s):  
Ayad M. Al Jubori ◽  
Raya Al-Dadah ◽  
Saad Mahmoud
2018 ◽  
Vol 70 ◽  
pp. 01012
Author(s):  
Dominika Matuszewska ◽  
Marta Kuta ◽  
Jan Górski

This paper details the development of a systematic methodology to integrated life cycle assessment (LCA) with thermo-economic models and to thereby identify the optimal exploitation schemes of geothermal resources. Overall geothermal systems consist of a superstructure of geothermal exploitable resources, a superstructure of conversion technology and multiple demand profiles for Swiss city. In this paper, an enhanced geothermal system has been chosen as exploitable resources. The energy conversion technology used in modelling is an organic Rankine cycle, which can be used to supply heat and electricity. In the Swiss case four demand profiles periods are considered: summer, interseason, winter and extreme winter, the city Nyon serving for the example case study. The multi-objective optimization system, that uses an evolutionary algorithm, is employed to determine the optimal scheme for some of the prepared models, with exergy efficiency and environmental impact as objectives.


Sign in / Sign up

Export Citation Format

Share Document