scholarly journals Performance analysis on a novel compact two-stage sorption refrigerator driven by low temperature heat source

Energy ◽  
2017 ◽  
Vol 135 ◽  
pp. 476-485 ◽  
Author(s):  
L. Jiang ◽  
R.Z. Wang ◽  
L.W. Wang ◽  
J.Y. Liu ◽  
P. Gao ◽  
...  
2011 ◽  
Vol 5 (3) ◽  
Author(s):  
Yuanyang Hu ◽  
Liwei Wang ◽  
Lu Xu ◽  
Ruzhu Wang ◽  
Jeremiah Kiplagat ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Zeynab Seyfouri ◽  
Mehran Ameri ◽  
Mozaffar Ali Mehrabian

In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.


Author(s):  
Shuichi Umezawa ◽  
Haruo Amari ◽  
Hiroyuki Shimada ◽  
Takashi Matsuhisa ◽  
Ryo Fukushima ◽  
...  

This paper reports application study of newly developed turbo heat pump for 130 degrees Celsius (°C) water for an industrial process in an actual factory. The heat pump is characterized by high efficiency and large heat output, by using a state-of-the-art turbo compressor. The heat pump requires a low temperature heat source in order to achieve high efficiency. The heat demand is for several drying furnaces in the factory, which requires producing hot air of 120 °C. The heat exchanger was designed to produce the hot air. Experiments were conducted to confirm the performance of the heat exchanger under a reduced size of the heat exchanger. Low temperature heat sources are from both exhaust gas of the drying furnaces and that of an annealing furnace. The heat exchangers were also designed to recover heat of the exhaust gas from the two types of furnace. A thermal storage tank was prepared for the low temperature heat source, and for adjusting the time difference between the heat demand and the low temperature heat source. The size of the tank was determined by considering the schedule of furnaces operations. As a result of the present study, it was confirmed that the heat pump was able to satisfy the present heat demand while retaining high efficiency. Primary energy consumption and CO2 emission of the heat pump were calculated on the basis of the present results in order to compare them with those of the boilers.


Author(s):  
Andrea Aniello ◽  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
...  

Over the last few decades, emissions regulations for internal combustion engines have become increasingly restrictive, pushing researchers around the world to exploit innovative propulsion solutions. Among them, the dual fuel low temperature combustion (LTC) strategy has proven capable of reducing fuel consumption and while meeting emissions regulations for oxides of nitrogen (NOx) and particulate matter (PM) without problematic aftertreatment systems. However, further investigations are still needed to reduce engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions as well as to extend the operational range and to further improve the performance and efficiency of dual-fuel engines. In this scenario, the present study focuses on numerical simulation of fumigated methane-diesel dual fuel LTC in a single-cylinder research engine (SCRE) operating at low load and high methane percent energy substitution (PES). Results are validated against experimental cylinder pressure and apparent heat release rate (AHRR) data. A 3D full-cylinder RANS simulation is used to thoroughly understand the influence of the start of injection (SOI) of diesel fuel on the overall combustion behavior, clarifying the causes of AHRR transition from two-stage AHRR at late SOIs to single-stage AHRR at early SOIs, low temperature heat release (LTHR) behavior, as well as high HC production. The numerical campaign shows that it is crucial to reliably represent the interaction between the diesel spray and the in-cylinder charge to match both local and overall methane energy fraction, which in turn, ensures a proper representation of the whole combustion. To that aim, even a slight deviation (∼3%) of the trapped mass or of the thermodynamic conditions would compromise the numerical accuracy, highlighting the importance of properly capturing all the phenomena occurring during the engine cycle. The comparison between numerical and experimental AHRR curves shows the capability of the numerical framework proposed to correctly represent the dual-fuel combustion process, including low temperature heat release (LTHR) and the transition from two-stage to single stage AHRR with advancing SOI. The numerical simulations allow for quantitative evaluation of the residence time of vapor-phase diesel fuel inside the combustion chamber and at the same time tracking the evolution of local diesel mass fraction during ignition delay — showing their influence on the LTHR phenomena. Oxidation regions of diesel and ignition points of methane are also displayed for each case, clarifying the reasons for the observed differences in combustion evolution at different SOIs.


Sign in / Sign up

Export Citation Format

Share Document