Energy budgeting and carbon footprint of pearl millet – mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem

Energy ◽  
2017 ◽  
Vol 141 ◽  
pp. 1052-1058 ◽  
Author(s):  
Mukesh Choudhary ◽  
K.S. Rana ◽  
R.S. Bana ◽  
P.C. Ghasal ◽  
G.L. Choudhary ◽  
...  
Author(s):  
R. Sammauria ◽  
O.P. Meena ◽  
M.R. Yadav ◽  
A.K. Gupta ◽  
H.L. Yadav ◽  
...  

Continuous adoption of Pearl millet-Wheat cropping system led to reduction in productivity which put a serious threat to its sustainability in semi-arid eastern plain zone of Rajasthan, India. Crop diversification with wider choice with a variety of crops is being promoted as an alternative to profit maximization with enhanced soil fertility status. Therefore, a long term experiment was initiated to evaluate the production potential, sustainability, resource-use efficiency and economics of nine Pearl millet based cropping systems. Result revealed that system productivity in terms of pearl millet equivalent yield (PMEY) was highest (30488 kg ha-1) with groundnut-wheat-cluster bean-onion crop rotation. Moreover, groundnut-wheat-cluster bean-onion recorded the highest SYI and land use efficiency (0.65 and 73.97%) followed by pearl millet-wheat-cluster bean-barley sequence (0.63 and 65.75%). The groundnut-wheat-cluster bean-onion also generated highest number of man days/ha/year (405). The highest values of organic carbon were found under green gram-mustard-pearl millet-lentil and cluster bean-pea-pearl millet-lentil. The maximum value of available P was recorded with cluster bean-mustard-green gram-garden cress followed by the groundnut-wheat-cluster bean-onion sequence. Available K decreased significantly from their initial values in all the cropping systems except groundnut-wheat-cluster bean-onion crop rotation. Among the various systems, groundnut-wheat-cluster bean-onion realized the highest net returns ( 213000 ha-1), followed by pearl millet-wheat-cluster bean-barley ( 163254 ha-1). Overall, it can be concluded that under the semi-arid agro climatic conditions of Rajasthan, groundnut-wheat-cluster bean-onion, followed by pearl millet-wheat-cluster bean-barley, were more productive, sustainable, resource use efficient and remunerative than other cropping systems.


2014 ◽  
Vol 13 (2) ◽  
pp. 120-134 ◽  
Author(s):  
Stephen C. Mason ◽  
Korodjouma Ouattara ◽  
Sibiri Jean-Baptiste Taonda ◽  
Siébou Palé ◽  
Adama Sohoro ◽  
...  

2018 ◽  
Vol 47 (2) ◽  
pp. 81-86 ◽  
Author(s):  
Alastair Orr

Successful adoption of agricultural innovations depends not just on the right technology but also on markets, institutions, and policies. We illustrate this argument with four case studies of agricultural innovations in the semi-arid tropics, two with high and two with low adoption. We show that the success of both hybrid pearl millet in India and dual-purpose cowpea in Nigeria depended on identifying market demand correctly and on innovative institutions to overcome constraints in the production and delivery of improved seed. Conversely, the low adoption of improved varieties of pigeon pea in Malawi and conservation agriculture in Zimbabwe reflect uncertain market conditions, misunderstood demand and the lack of sustainable institutions for input delivery. The results highlight how variations in the enabling conditions may influence the fate of agricultural innovations.


2022 ◽  
Vol 14 (1) ◽  
pp. 543
Author(s):  
Mukhtar Ahmad Faiz ◽  
Ram Swaroop Bana ◽  
Anil Kumar Choudhary ◽  
Alison M. Laing ◽  
Ruchi Bansal ◽  
...  

Pearl millet-based cropping systems with intensive tillage operations prior to sowing have limited sustainable productivity in the low-irrigation conditions of semi-arid farming ecologies, such as those in the north Indian plains. The adoption of improved management practices such as zero tillage with residue retention (ZTR) and diversification with the inclusion of summer pulse crops has the potential to improve cropping system sustainability. Therefore, an experiment was designed to compare two improved management practices, zero tillage (ZT) and ZTR, to conventional tillage (CT), across three pearl millet-based cropping systems: pearl millet–chickpea (PM–CP), PM–CP–mungbean (MB), and PM–CP–forage pearl millet in a two-year experiment. Experimental treatments were compared in terms of pearl millet productivity, mineral biofortification, and greenhouse gas emissions. Results showed a significant increase in pearl millet yield attributes, grain and stover productivity, nutrient uptake, and micronutrient biofortification in the PM–CP–MB cropping system under ZTR relative to other treatment combinations. On-farm evaluation at different locations also showed that the intensification of PM–CP system using summer crops enhanced pearl millet productivity across diverse tillage systems. Overall, zero tillage practices combined with diversified pearl millet-based cropping systems are likely to be management practices, which farmers can use to sustainably maintain or increase cropping system productivity in the various semi-arid areas of the world.


2020 ◽  
pp. 48-51
Author(s):  
A. Nurbekov ◽  
L. Xalilova ◽  
B. Isroilov ◽  
U. Xalilov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Changjiang Li ◽  
Shuo Li

AbstractThe well-irrigated planting strategy (WI) consumes a large amount of energy and exacerbates greenhouse gas emissions, endangering the sustainable agricultural production. This 2-year work aims to estimate the economic benefit, energy budget and carbon footprint of a wheat–maize double cropping system under conventional rain-fed flat planting (irrigation once a year, control), ridge–furrows with plastic film mulching on the ridge (irrigation once a year, RP), and the WI in dry semi-humid areas of China. Significantly higher wheat and maize yields and net returns were achieved under RP than those under the control, while a visible reduction was found for wheat yields when compared with the WI. The ratio of benefit: cost under RP was also higher by 10.5% than that under the control in the first rotation cycle, but did not differ with those under WI. The net energy output and carbon output followed the same trends with net returns, but the RP had the largest energy use efficiency, energy productivity carbon efficiency and carbon sustainability among treatments. Therefore, the RP was an effective substitution for well–irrigated planting strategy for achieving sustained agricultural development in dry semi-humid areas.


Sign in / Sign up

Export Citation Format

Share Document