Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network

Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 118980 ◽  
Author(s):  
Jiandong Duan ◽  
Peng Wang ◽  
Wentao Ma ◽  
Xuan Tian ◽  
Shuai Fang ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qichun Bing ◽  
Fuxin Shen ◽  
Xiufeng Chen ◽  
Weijian Zhang ◽  
Yanran Hu ◽  
...  

Timely and accurate traffic prediction information is essential for advanced traffic management system (ATMS) and advanced traveler information system (ATIS). Because of the characteristics of nonlinearity, nonstationarity, and randomness, short-term traffic flow prediction could be still a challenging task. In this study, a hybrid short-term traffic flow multistep prediction method is proposed by combining the variational mode decomposition (VMD) algorithm and long short-term memory (LSTM) model. Firstly, the VMD algorithm is employed to decompose the original traffic flow data into a series of intrinsic mode function (IMF) components. Secondly, different LSTM models are established to predict different IMF components. For each prediction model, one-step to three-step predictions are carried out. Finally, the component prediction results are aggregated to obtain the final traffic flow multistep prediction values. The prediction performance of the proposed hybrid model is investigated using inductive loop data measured from the north-south viaduct expressway in Shanghai. The experiment results show that (1) VMD algorithm could effectively avoid the problems of endpoint effects and modal aliasing, and the decomposition effect is better than empirical mode decomposition algorithm and wavelet decomposition algorithm; (2) among all the involved methods, the proposed hybrid model is more effective and robust in extracting the trend information, which has the best multistep prediction performance.


Author(s):  
Ning He ◽  
Cheng Qian ◽  
Lile He

Abstract As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter are developed. Firstly, the adaptive hybrid model is constructed, which is a combination of empirical model and long-short term memory neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics, and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.


Sign in / Sign up

Export Citation Format

Share Document