scholarly journals Variable time-step: A method for improving computational tractability for energy system models with long-term storage

Energy ◽  
2020 ◽  
Vol 213 ◽  
pp. 119024
Author(s):  
Paul de Guibert ◽  
Behrang Shirizadeh ◽  
Philippe Quirion
2019 ◽  
Vol 217 ◽  
pp. 01016 ◽  
Author(s):  
Nikita Tomin ◽  
Alexey Zhukov ◽  
Alexander Domyshev

The problem of optimally activating the flexible energy sources (short- and long-term storage capacities) of electricity microgrid is formulated as a sequential decision making problem under uncertainty where, at every time-step, the uncertainty comes from the lack of knowledge about future electricity consumption and weather dependent PV production. This paper proposes to address this problem using deep reinforcement learning. To this purpose, a specific deep learning architecture has been used in order to extract knowledge from past consumption and production time series as well as any available forecasts. The approach is empirically illustrated in the case of off-grid microgrids located in Belgium and Russia.


Author(s):  
Elizabeth Robertson ◽  
Stuart Galloway

The Scottish Government’s commitment for 100% of electricity consumed in Scotland to be from renewable, zero-carbon sources by 2020 continues to drive change in the energy system alongside European and UK targets. The growth of renewables in Scotland is being seen at many scales including industrial, domestic and community generation. In these latter two cases, a transition from the current ‘top down’ energy distribution system to a newer approach is emerging. The work of this paper will look at a ‘bottom up’ view that sees community led distributed energy at its centre. This paper uses the modelling tool HESA to investigate high penetrations of distributed generation in the Angus Region of Scotland. Installations of distributed generation will follow Thousand Flowers transition pathway trajectory, which sees more than 50% of electricity demand being supplied by distributed generation by 2050. From this, insights around the technological and socio-political feasibility, consequences and implications of high penetrations of distributed generation in the UK energy system are presented. Results demonstrate the influence that system change will have on regional and local emission levels under four separate scenarios. It is shown that the penetration of distributed generation requires supplementary installations of reliable and long-term storage alongside utilisation of transmission and transportation infrastructures to maximise the potential of distributed generation and maximise whole system benefits. Importantly, there must be a level of co-ordination and support to realise a shift to a highly distributed energy future to ensure there is a strong economic case with a reliable policy backing.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

Sign in / Sign up

Export Citation Format

Share Document