Proton exchange membrane fuel cell model parameter identification based on dynamic differential evolution with collective guidance factor algorithm

Energy ◽  
2021 ◽  
Vol 216 ◽  
pp. 119056
Author(s):  
Zhe Sun ◽  
Dan Cao ◽  
Yawen Ling ◽  
Feng Xiang ◽  
Zhixin Sun ◽  
...  
Author(s):  
Zhongying Shi ◽  
Xia Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


Author(s):  
Z. Shi ◽  
X. Wang

The gas diffusion layer (GDL) in a proton exchange membrane (PEM) fuel cell has a porous structure with anisotropic and non-homogenous properties. The objective of this research is to develop a PEM fuel cell model where transport phenomena in the GDL are simulated based on GDL’s pore structure. The GDL pore structure was obtained by using a scanning electron microscope (SEM). GDL’s cross-section view instead of surface view was scanned under the SEM. The SEM image was then processed using an image processing tool to obtain a two-dimensional computational domain. This pore structure model was then coupled with an electrochemical model to predict the overall fuel cell performance. The transport phenomena in the GDL were simulated by solving the Navier-Stokes equation directly in the GDL pore structure. By comparing with the testing data, the fuel cell model predicted a reasonable fuel cell polarization curve. The pore structure model was further used to calculate the GDL permeability. The numerically predicted permeability was close to the value published in the literature. A future application of the current pore structure model is to predict GDL thermal and electric related properties.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3478 ◽  
Author(s):  
Arne L. Lazar ◽  
Swantje C. Konradt ◽  
Hermann Rottengruber

This work presents an open-source, dynamic, 1D, proton exchange membrane fuel cell model suitable for real-time applications. It estimates the cell voltage based on activation, ohmic and concentration overpotentials and considers water transport through the membrane by means of osmosis, diffusion and hydraulic permeation. Simplified equations reduce the computational load to make it viable for real-time analysis, quick parameter studies and usage in complex systems like complete vehicle models. Two modes of operation for use with or without reference polarization curves allow for a flexible application even without information about cell parameters. The program code is written in MATLAB and provided under the terms and conditions of the Creative Commons Attribution License (CC BY). It is designed to be used inside of a Simulink model, which allows this fuel cell model to be used in a wide variety of 1D simulation platforms by exporting the code as C/C++.


Sign in / Sign up

Export Citation Format

Share Document