Energy and exergy analysis of biogas fired regenerative gas turbine cycle with CO2 recirculation for oxy-fuel combustion power generation

Energy ◽  
2020 ◽  
pp. 119687
Author(s):  
Mohammadreza Mohammadpour ◽  
Ehsan Houshfar ◽  
Mehdi Ashjaee ◽  
Amirreza Mohammadpour
2021 ◽  
Vol 1 (1) ◽  
pp. 006-015
Author(s):  
E. H. Betelmal ◽  
A. M. Naas ◽  
A. Mjani

In this paper, we investigated a thermodynamic model of the regeneration gas turbine cycle with nitrogen supplied during the compression process. A suitable quantity of nitrogen that comes from the air separation cycle (Linde cycle) is injected between the stages of the compressor where it is evaporated, then the nitrogen and air mixture enters into the combustion chamber where it is burned and expanded in the turbine. We used this method to reduce greenhouse gases and improve gas turbine efficiency. In this work, we evaluated the operational data of the regeneration gas turbine cycle and the maximum amount of nitrogen that can be injected into the compressor. We also investigated the performance variation due to nitrogen spray into the compressor, and the effect of varying ambient temperature on the performance of gas turbines (thermal efficiency, power), as well as a comparison between the normal gas turbine cycle, and the remodelled compression cycle. The exergy analysis shows that the injection of the nitrogen will increase exergy destruction. The results demonstrated an 8% increase in the efficiency of the cycle, furthermore, CO2 emission decreased by 11% when the nitrogen was injected into the compressor.


Author(s):  
Sandro B. Ferreira ◽  
Pericles Pilidis ◽  
Marco A. R. Nascimento

This paper aims to assess the performance of the Externally Fired Gas Turbine cycle (EFGT) and a variant, ICEFGT (InterCooled Externally Fired Gas Turbine), and Biomass Integrated Gasification Intercooled Recuperated cycle (BIG/ICR), all using biomass as fuel – solid in the EFGT cases and gasified in the BIG/ICR cycle. The results are compared with the performance of a Biomass Integrated Gasification Gas Turbine (BIG/GT), as a representative of the most common use of biomass in gas turbine cycles. The energy and exergy analysis detailed here shows that if the challenges of the design and construction of the heat exchanger can be met, the externally fired cycles show great promise.


Author(s):  
M. N. Khan ◽  
Ibrahim M. Alarifi ◽  
I. Tlili

Abstract Environmentally friendly and effective power systems have been receiving increased investigation due to the aim of addressing global warming, energy expansion, and economic growth. Gas turbine cycles are perceived as a useful technology that has advanced power capacity. In this research, a gas turbine cycle has been proposed and developed from a simple and regenerative gas turbine cycle to enhance performance and reduce Specific fuel consumption. The impact of specific factors regarding the proposed gas turbine cycle on thermal efficiency, net output, specific fuel consumption, and exergy destruction, have been inspected. The assessments of the pertinent parameters were performed based on conventional thermodynamic energy and exergy analysis. The results obtained indicate that the peak temperature of the Proposed Gas Turbine Cycle increased considerably without affecting fuel consumption. The results show that at Pressure Ratio (rp = 6) the performance of the Proposed Gas Turbine Cycle is much better than Single Gas Turbine Cycle but the total exergy destruction of Proposed Gas Turbine Cycle higher than the SGTC.


2019 ◽  
Vol 141 (1) ◽  
pp. 495-510 ◽  
Author(s):  
Behrooz Ahmadi ◽  
Ali Akbar Golneshan ◽  
Hossein Arasteh ◽  
Arash Karimipour ◽  
Quang-Vu Bach

Sign in / Sign up

Export Citation Format

Share Document