Application domain extension of incremental capacity-based battery SoH indicators

Energy ◽  
2021 ◽  
pp. 121224
Author(s):  
Brian Ospina Agudelo ◽  
Walter Zamboni ◽  
Eric Monmasson
2019 ◽  
pp. 1306-1323
Author(s):  
Marcel Bruse ◽  
Romain Nouvel ◽  
Parag Wate ◽  
Volker Kraut ◽  
Volker Coors

Different associated properties of city models like building geometries, building energy systems, building end uses, and building occupant behavior are usually saved in different data formats and are obtained from different data sources. Experience has shown that the integration of these data sets for the purpose of energy simulation on city scale is often cumbersome and error prone. A new application domain extension for CityGML has been developed in order to integrate energy-related figures of buildings, thermal volumes, and facades with their geometric descriptions. These energy-related figures can be parameters or results of energy simulations. The applicability of the new application domain extension has been demonstrated for heating energy demand calculation.


2019 ◽  
Vol 8 (12) ◽  
pp. 576 ◽  
Author(s):  
Chi Zhang ◽  
Yunping Liu ◽  
Chen Lin ◽  
Liangchen Zhou ◽  
Bingxian Lin ◽  
...  

Virtual 3D city models can be stored and exchanged in the CityGML open data model. When dynamic phenomena in 3D cities are represented with a CityGML application domain extension (ADE), the objects in CityGML are often used as static background, and it is difficult to represent the evolutionary process of the objects themselves. Although a construction process model in building information modeling (BIM) is available, it cannot efficiently and accurately simulate the building construction process at the city level. Accordingly, employing the arrow diagramming method, we developed a CityGML ADE to represent this process. We extended the hierarchy of the model and proposed the process levels of detail model. Subsequently, we explored a mechanism to associate the construction process and building objects as well as the mechanism to automate construction process transitions. Experiments indicated that the building construction process ADE (BCPADE) could adequately express the characteristics of this process. Compared with the building construction process model in the architecture, engineering, and construction field, BCPADE removes redundant information, i.e., that unrelated to a 3D city. It can adequately express building construction processes at multiple spatiotemporal scales and accurately convey building object behavior during building evolution, such as adding, removal, merging, and change. Such characteristics enable BCPADE to render efficient and accurate simulations of the building construction process at the city level.


Author(s):  
C. B. Siew ◽  
N. Z. Abdul Halim ◽  
H. Karim ◽  
M. A. Mohd Zain ◽  
K. S. Looi

Abstract. Recent advancements in 3D city modelling and emerging trends in implementing and realising Digital Twins motivate the Department of Survey and Mapping Malaysia (JUPEM) to develop and implement SmartKADASTER (SKiP) Phase 2. SmartKADASTER Phase I was a precursor to this system, and it primarily focused on applying two-dimensional (2D) spatial data for 3D spatial analysis. CityGML was used as the data model for various Levels of Detail (LoD) in this new initiative to represent city models across the Greater Kuala Lumpur region. SmartKADASTER however, lacks strata information. Therefore, to integrate strata information into the SKiP citymodel environment, an Application Domain Extension (ADE) for CityGML has been developed to convert existing Strata XML to StrataGML, a CityGML-compliant data output format. This paper describes the purpose of the SmartKADASTER initiative in Section 1. Section 2 explains additional context for the initiative as well as some backgrounds. Section 3 discusses the conversion workflow and ADE definitions, followed by a brief discussion of visualisation in Section 4 and a project summary in Section 5.


Author(s):  
A. Konde ◽  
H. Tauscher ◽  
F. Biljecki ◽  
J. Crawford

<p><strong>Abstract.</strong> This paper (1) discusses the modelling of floor plans in CityGML; (2) proposes a delineation of multiple variants of indoor LoD0 in line with the current proposal for CityGML 3.0; (3) demonstrates a method to generate CityGML datasets with included floor plans; and (4) explores their usability. The use of an Application Domain Extension (ADE) is being proposed in order to preserve potentially useful information found within detailed building information models (BIM), specifically Industry Foundation Class (IFC), that cannot be stored in CityGML natively. Our work follows the current developments of CityGML 3.0, and based on the discussions in the CityGML Standards Working Group (SWG) it showcases one of the first datasets consistent with the ongoing development of CityGML 3.0 and one that follows the proposals for a new LOD concept and new interior features.</p>


2013 ◽  
Vol 17 (6) ◽  
pp. 920-942 ◽  
Author(s):  
Linda van den Brink ◽  
Jantien Stoter ◽  
Sisi Zlatanova

Sign in / Sign up

Export Citation Format

Share Document