Air pollutant emissions from on-road vehicles and their control in Inner Mongolia, China

Energy ◽  
2021 ◽  
pp. 121724
Author(s):  
Geng Liu ◽  
Shida Sun ◽  
Chao Zou ◽  
Bo Wang ◽  
Lin Wu ◽  
...  
2021 ◽  
Vol 15 (2) ◽  
pp. 5-14
Author(s):  
Carmelia Mariana Dragomir Balanica ◽  
Ciprian Cuzmin ◽  
Cecilia Serban ◽  
Cristian Muntenita

Road transport, including accessibility and individual mobility is considered unanimously as a fundamental element of contemporary living. The study area is considering Braila County with a total population of around over 305,000. The area it is well served by 6 national roads, 27 county roads and 42 communal roads and contains some of the most heavily trafficked stretches of road in the Romania. The emissions analysed in this study CH4, CO, CO2, N2O, NH3, NOx, PM2.5 and PM10, were collected by the Agency for Environmental Protection Braila during 2015-2019 based on questionnaires according to EMEP/EEA air pollutant emission inventory guidebook. The highest level of pollutant emissions was recorded in 2017, more exactly 191714,5 Megatons. In this article we analysed five categories of pollution sources: Passenger car, Light commercial trucks, Heavy-duty vehicles, Motorcycles and Non - Road vehicles and other mobile equipment. With the exception of CO2, N2O and NH3, pollutant emissions decreased for the eight pollutants analysed.


2014 ◽  
Vol 496 ◽  
pp. 1-10 ◽  
Author(s):  
Jianlei Lang ◽  
Shuiyuan Cheng ◽  
Ying Zhou ◽  
Yonglin Zhang ◽  
Gang Wang

2017 ◽  
Vol 16 (4) ◽  
pp. 809-819 ◽  
Author(s):  
Gabriel Lazar ◽  
Iulia Carmen Ciobotici Terryn ◽  
Andreea Cocarcea

2021 ◽  
Vol 7 (3) ◽  
pp. eabd6696
Author(s):  
Zongbo Shi ◽  
Congbo Song ◽  
Bowen Liu ◽  
Gongda Lu ◽  
Jingsha Xu ◽  
...  

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% (except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophisticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements were notably more limited than some earlier reports or observational data suggested.


2014 ◽  
Vol 14 (17) ◽  
pp. 8849-8868 ◽  
Author(s):  
Y. Zhao ◽  
J. Zhang ◽  
C. P. Nielsen

Abstract. To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby concentrations of negative-forcing sulfate particles. Expanded control of emissions of fine particles and carbonaceous aerosols from small industrial and residential sources is recommended, and a more comprehensive emission control strategy targeting a wider range of pollutants (volatile organic compounds, NH3 and CO, etc.) and taking account of more diverse environmental impacts is also urgently needed.


1986 ◽  
Vol 12 (1-4) ◽  
pp. 351-362 ◽  
Author(s):  
Ken Sexton ◽  
Lurance M. Webber ◽  
Steven B. Hayward ◽  
Richard G. Sextro

Sign in / Sign up

Export Citation Format

Share Document