Design and Evaluation of a Conceptual Waste-to-Energy Approach Integrating Plasma Waste Gasification with Coal-Fired Power Generation

Energy ◽  
2021 ◽  
pp. 121947
Author(s):  
Peiyuan Pan ◽  
Weike Peng ◽  
Jiarui Li ◽  
Heng Chen ◽  
Gang Xu ◽  
...  
2020 ◽  
Vol 17 (7) ◽  
pp. 768-779
Author(s):  
Natarajan Narayanan ◽  
Vasudevan Mangottiri ◽  
Kiruba Narayanan

Microbial Fuel Cells (MFCs) offer a sustainable solution for alternative energy production by employing microorganisms as catalysts for direct conversion of chemical energy of feedstock into electricity. Electricity from urine (urine-tricity) using MFCs is a promising cost-effective technology capable of serving multipurpose benefits - generation of electricity, waste alleviation, resource recovery and disinfection. As an abundant waste product from human and animal origin with high nutritional values, urine is considered to be a potential source for extraction of alternative energy in the coming days. However, developments to improve power generation from urine-fed MFCs at reasonable scales still face many challenges such as non-availability of sustainable materials, cathodic limitations, and low power density. The aim of this paper was to critically evaluate the state-of-the-art research and developments in urine-fed MFCs over the past decade (2008-2018) in terms of their construction (material selection and configuration), modes of operation (batch, continuous, cascade, etc.) and performance (power generation, nutrient recovery and waste treatment). This review identifies the preference for sources of urine for MFC application from human beings, cows and elephants. Among these, human urine-fed MFCs offer a variety of applications to practice in the real-world scenario. One key observation is that, effective disinfection can be achieved by optimizing the operating conditions and MFC configurations without compromising on performance. In essence, this review demarcates the scope of enhancing the reuse potential of urine for renewable energy generation and simultaneously achieving resource recovery.


Author(s):  
L. C. Malucelli ◽  
M. Guiotoku ◽  
C. M. B. F. Maia ◽  
M. A. S. Carvalho Filho

Author(s):  
Nicola Maceli ◽  
Lorenzo Arcangeli ◽  
Andrea Arnone

Abstract The whole energy market, from production plants to end-users, is marked by a strong impulse towards a sustainable use of raw materials and resources, and a reduction of its carbon foot-print. Increasing the split of energy produced with renewables, improving the efficiency of the power plants and reducing the waste of energy appear to be mandatory steps to reach the goal of sustainability. The steam turbines are present in the power generation market with different roles: they are used in fossil, combined cycles, geothermal and concentrated solar plants, but also in waste-to-energy and heat recovery applications. Therefore, they still play a primary role in the energy production market. There are many chances for efficiency improvement in steam turbines, and from a rational point of view, it is important to consider that the LP section contributes to the overall power delivered by the turbine typically by around 40% in industrial power generation. Therefore, the industry is more than ever interested in developing methodologies capable of providing a reliable estimate of the LP stages efficiency, while reducing development costs and time. This paper presents the results obtained using a CFD commercial code with a set of user defined subroutines to model the effects of non-equilibrium steam evolution, droplets nucleation and growth. The numerical results have been compared to well-known test cases available in literature, to show the effects of different modeling hypotheses. The paper then focuses on a test case relevant to a cascade configuration, to show the code capability in terms of bladerow efficiency prediction. Finally, a comprehensive view of the obtained results is done through comparison with existing correlations.


2016 ◽  
Vol 8 (10) ◽  
pp. 165 ◽  
Author(s):  
John Vourdoubas ◽  
Vasiliki K. Skoulou

<p>The landfill gas (LFG) produced from the existing landfill site in Heraklion city, Crete island, Greece, is not currently exploited to its full potential. It could however be exploited for power generation and/or combined heat and power (CHP) production in near future by fully unlocking its energy production potential of the gas generated from the landfill site. This gas (LFG) could feed a 1.6 MW<sub>el</sub> power plant corresponding to the 0.42% of the annually consumed electricity in Crete. The LFG utilization for power generation and CHP production has been studied, and the economics of three energy production scenarios have been calculated. An initial capital investment of 2.4 to 3.2 M €, with payback times (PBT) of approximately 3.5 to 6 years and Net Present Values (NPV) ranging between 2 to 6 M € have been calculated. These values prove the profitability of the attempt of bioenergy production from the biogas produced from the existing landfill site in Heraklion city, Crete. Based on the current economic situation of the country, any similar initiative could positively contribute to strengthening the economy of local community and as a result the country, offering several other socioeconomic benefits like e.g. waste minimization, creation of new job positions etc. by increasing, at the same time, the Renewable Energy Sources (RES) share in energy production sector etc. Apart from the favorable economics of the proposed waste to energy production scheme, all the additional environmental and social benefits make the attempt of a near future exploitation of the landfill gas produced in Heraklion, an attractive short term alternative for waste to bio-energy production.</p>


2014 ◽  
Vol 126 (2) ◽  
pp. 32 ◽  
Author(s):  
John Sanderson

Rising energy costs, increasing landfill prices and the environmental imperative to reduce atmospheric emissions of fossil CO2 are all compelling medium and large energy users throughout Australia to consider decentralised onsite power generation options. In addition to the rollout of household and community-scale photovoltaic (PV) and wind, waste-to-energy technologies such as landfill gas and biogas-based power plant are now well established in Australia. However, various other waste-to-energy technologies, operating elsewhere, have yet to take off. This presentation provided an overview of waste to- energy processes, including examples of currently operating commercial processes as well as recent research to highlight the interesting mix of processes and economics that make up the waste-to-energy landscape.


2004 ◽  
Vol 2004 (0) ◽  
pp. 265-266
Author(s):  
Kunio YOSHIKAWA ◽  
Tomoaki NAMIOKA ◽  
Tetsuya ABE ◽  
Tsutomu HARA

Sign in / Sign up

Export Citation Format

Share Document