Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction

Energy ◽  
2021 ◽  
pp. 122543
Author(s):  
Huining Zhang ◽  
Jianping Dong ◽  
Chao Wei ◽  
Caifang Cao ◽  
Zuotai Zhang
Energy Policy ◽  
1993 ◽  
Vol 21 (6) ◽  
pp. 656-667 ◽  
Author(s):  
Kornelis Blok ◽  
Ernst Worrell ◽  
Rob Cuelenaere ◽  
Wim Turkenburg

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1161
Author(s):  
Maedeh Rahnama Mobarakeh ◽  
Miguel Santos Silva ◽  
Thomas Kienberger

The pulp and paper (P&P) sector is a dynamic manufacturing industry and plays an essential role in the Austrian economy. However, the sector, which consumes about 20 TWh of final energy, is responsible for 7% of Austria’s industrial CO2 emissions. This study, intending to assess the potential for improving energy efficiency and reducing emissions in the Austrian context in the P&P sector, uses a bottom-up approach model. The model is applied to analyze the energy consumption (heat and electricity) and CO2 emissions in the main processes, related to the P&P production from virgin or recycled fibers. Afterward, technological options to reduce energy consumption and fossil CO2 emissions for P&P production are investigated, and various low-carbon technologies are applied to the model. For each of the selected technologies, the potential of emission reduction and energy savings up to 2050 is estimated. Finally, a series of low-carbon technology-based scenarios are developed and evaluated. These scenarios’ content is based on the improvement potential associated with the various processes of different paper grades. The results reveal that the investigated technologies applied in the production process (chemical pulping and paper drying) have a minor impact on CO2 emission reduction (maximum 10% due to applying an impulse dryer). In contrast, steam supply electrification, by replacing fossil fuel boilers with direct heat supply (such as commercial electric boilers or heat pumps), enables reducing emissions by up to 75%. This means that the goal of 100% CO2 emission reduction by 2050 cannot be reached with one method alone. Consequently, a combination of technologies, particularly with the electrification of the steam supply, along with the use of carbon-free electricity generated by renewable energy, appears to be essential.


Sign in / Sign up

Export Citation Format

Share Document