Reactive separation processes applied to biodiesel production from residual oils and fats: Design, optimization and techno-economic assessment of routes using solid catalysts

Energy ◽  
2021 ◽  
pp. 122784
Author(s):  
Allan Almeida Albuquerque ◽  
Flora T.T. Ng ◽  
Leandro Danielski ◽  
Luiz Stragevitch
2019 ◽  
pp. 1-17
Author(s):  
William A. Leet ◽  
Santi Kulprathipanja

ChemInform ◽  
2013 ◽  
Vol 44 (49) ◽  
pp. no-no
Author(s):  
Ramli Mat ◽  
Rubyatul A. Samsudin ◽  
Mahadhir Mohamed ◽  
Anwar Johari

Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1025
Author(s):  
Mohammed O. Faruque ◽  
Shaikh A. Razzak ◽  
Mohammad M. Hossain

The depletion of fossil fuel reserves and increased environmental concerns related to fossil fuel production and combustion has forced the global communities to search for renewable fuels. In this regard, microalgae-based biodiesel has been considered as one of the interesting alternatives. Biodiesel production from the cultivation of microalgae is eco-friendly and sustainable. Moreover, microalgae have several advantages over other bioenergy sources, including their good photosynthetic capacity and faster growth rates. The productivity of microalgae per unit land area is also significantly higher than that of terrestrial plants. The produced microalgae biomass is rich with high quality lipids, which can be converted into biodiesel by transesterification reactions. Generally, the transesterification reactions are carried out in the presence of a homogeneous or heterogeneous catalyst. The homogeneous catalysts have many disadvantages, including their single use, slow reaction rate and saponification issues due to the presence of fatty acids in the feedstock. The acidic nature of the homogeneous catalysts also causes equipment corrosion. On the other hand, the heterogeneous catalysts offer several advantages, including their reusability, higher reaction rate and selectivity, easy product/catalyst separation and low cost. Due to these facts, the development of solid phase transesterification catalysts have been receiving growing interest. The present review is focused on the use of heterogeneous catalysts for biodiesel production from microalgal oil as a reliable feedstock with a comparison to other available feedstocks. It also highlights optimal reaction conditions for maximum biodiesel yields, reusability of the solid catalysts, cost, and environmental impact. The superior lipid content of microalgae and the efficient concurrent esterification and transesterification of the solid acid−base catalysts can offer new advancements in biodiesel production.


2013 ◽  
Vol 824 ◽  
pp. 451-458
Author(s):  
A.K. Temu

One of the disadvantages of homogeneous base catalysts in biodiesel production is that they cannot be reused or regenerated because they are consumed in the reaction. Besides, homogeneous catalysed process is not environmentally friendly because a lot of waste water is produced in the separation step. Unlike homogeneous, heterogeneous catalysts are environmentally benign, can be reused and regenerated, and could be operated in continuous processes, thus providing a promising option for biodiesel production. This paper presents catalytic activity of single and mixed solid catalysts in production of biodiesel from palm oil using methanol as well as ethanol at atmospheric pressure. The catalysts used are CaO, K2CO3, Al2O3, and CaO/K2CO3, CaO/Al2O3, K2CO3/Al2O3 mixtures. Results show that methanol is a better reactant with biodiesel yield ranging from 48 to 96.5% while ethanol gives yields ranging from 20 to 95.2%. The yield data for single catalysts range from 20 to 89.2% while that for mixed catalysts range from 52 to 96.5% indicating improvement in the activity by mixing the catalysts. The study also shows that biodiesel yield increases with catalyst loading which emphasizes the need for sufficient number of active sites. The properties of biodiesel produced compares well with ASTM D6751 and EN 14124 biodiesel standards.


Sign in / Sign up

Export Citation Format

Share Document