Energy management of ultra-short-term optimal scheduling of integrated energy system considering the characteristics of heating network

Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122790
Author(s):  
Zhaoyan Zhang ◽  
Peiguang Wang ◽  
Ping Jiang ◽  
Zhiheng Liu ◽  
Lei Fu
2021 ◽  
Vol 9 ◽  
Author(s):  
Yuxin Zhang ◽  
Qihe Shan ◽  
Fei Teng ◽  
Tieshan Li

In order to enhance navigation safety and promote environmental protection, this paper takes the problem of energy management in a ship-integrated energy system into consideration. According to the characteristics of navigation, an intelligent ship energy management model, simultaneously considering the social and economic benefits, has been proposed. Meanwhile, this paper analyzes a distributed optimal scheduling problem which considers renewable generation devices and an energy storage system. Combined with an electricity-power system and thermal-power system, we propose an optimal scheduling scheme to accurately meet the actual load demand based on the pre-results analyzed by the ensemble learning short-term load forecasting algorithm. In addition, the related stability analysis is given. Further, a series of simulation results have been presented, which denote that the proposed load forecasting algorithm can accurately analyze the short-term load demand trend, and the proposed optimization algorithm can effectively coordinate economic and environmental protection.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


2021 ◽  
Vol 13 (5) ◽  
pp. 2615
Author(s):  
Junqing Wang ◽  
Wenhui Zhao ◽  
Lu Qiu ◽  
Puyu Yuan

Since application of integrated energy systems (IESs) has formed a markedly increasing trend recently, selecting an appropriate integrated energy system construction scheme becomes essential to the energy supplier. This paper aims to develop a multi-criteria decision-making model for the evaluation and selection of an IES construction scheme equipped with smart energy management and control platform. Firstly, a comprehensive evaluation criteria system including economy, energy, environment, technology and service is established. The evaluation criteria system is divided into quantitative criteria denoted by interval numbers and qualitative criteria. Secondly, single-valued neutrosophic numbers are adopted to denote the qualitative criteria in the evaluation criteria system. Thirdly, in order to accommodate mixed data types consisting of both interval numbers and single-valued neutrosophic numbers, the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method is extended into a three-stage technique by introducing a fusion coefficient μ. Then, a real case in China is evaluated through applying the proposed method. Furthermore, a comprehensive discussion is made to analyze the evaluation result and verify the reliability and stability of the method. In short, this study provides a useful tool for the energy supplier to evaluate and select a preferred IES construction scheme.


Sign in / Sign up

Export Citation Format

Share Document