Experimental assessment of a pilot scale hybrid cooling system for water consumption reduction in CSP plants

Energy ◽  
2021 ◽  
pp. 122948
Author(s):  
Patricia Palenzuela ◽  
Lidia Roca ◽  
Faisal Asfand ◽  
Kumar Patchigolla
Solar Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 245-254 ◽  
Author(s):  
Jianting Yu ◽  
Zeyu Li ◽  
Erjian Chen ◽  
Yongrui Xu ◽  
Hongkai Chen ◽  
...  

2019 ◽  
Vol 11 (7) ◽  
pp. 2085 ◽  
Author(s):  
Fontina Petrakopoulou ◽  
Marina Olmeda-Delgado

With vast amounts of water consumed for electricity generation and water scarcity predicted to rise in the near future, the necessity to evaluate water consumption in power plants arises. Cooling systems are the main source of water consumption in thermoelectric power plants, since water is a cooling fluid with relatively low cost and high efficiency. This study evaluates the performance of two types of power plants: a natural gas combined-cycle and an integrated solar combined-cycle. Special focus is made on the cooling system used in the plants and its characteristics, such as water consumption, related costs, and fuel requirements. Wet, dry, and hybrid cooling systems are studied for each of the power plants. While water is used as the cooling fluid to condense the steam in wet cooling, dry cooling uses air circulated by a fan. Hybrid cooling presents an alternative that combines both methods. We find that hybrid cooling has the highest investment costs as it bears the sum of the costs of both wet and dry cooling systems. However, this system produces considerable fuel savings when compared to dry cooling, and a 50% reduction in water consumption when compared to wet cooling. As expected, the wet cooling system has the highest exergetic efficiency, of 1 and 5 percentage points above that of dry cooling in the conventional combined-cycle and integrated solar combined-cycle, respectively, thus representing the lowest investment cost and highest water consumption among the three alternatives. Hybrid and dry cooling systems may be considered viable alternatives under increasing water costs, requiring better enforcement of the measures for sustainable water consumption in the energy sector.


2020 ◽  
Vol 12 (11) ◽  
pp. 4739
Author(s):  
Faisal Asfand ◽  
Patricia Palenzuela ◽  
Lidia Roca ◽  
Adèle Caron ◽  
Charles-André Lemarié ◽  
...  

The use of wet cooling in Concentrated Solar Power (CSP) plants tends to be an unfavourable option in regions where water is scarce due to the high water requirements of the method. Dry-cooling systems allow a water consumption reduction of up to 80% but at the expense of lower electricity production. A hybrid cooling system (the combination of dry and wet cooling) offers the advantages of each process in terms of lower water consumption and higher electricity production. A model of a CSP plant which integrates a hybrid cooling system has been implemented in Thermoflex software. The water consumption and the net power generation have been evaluated for different configurations of the hybrid cooling system: series, parallel, series-parallel and parallel-series. It was found that the most favourable configuration in terms of water saving was series-parallel, in which a water reduction of up to 50% is possible compared to the only-wet cooling option, whereas an increase of 2.5% in the power generation is possible compared to the only-dry cooling option. The parallel configuration was the best in terms of power generation with an increase of 3.2% when compared with the only-dry cooling option, and a reduction of 30% water consumption compared to the only-wet cooling option.


Author(s):  
Tianyi Gao ◽  
James Geer ◽  
Bahgat G. Sammakia ◽  
Russell Tipton ◽  
Mark Seymour

Cooling power constitutes a large portion of the total electrical power consumption in data centers. Approximately 25%∼40% of the electricity used within a production data center is consumed by the cooling system. Improving the cooling energy efficiency has attracted a great deal of research attention. Many strategies have been proposed for cutting the data center energy costs. One of the effective strategies for increasing the cooling efficiency is using dynamic thermal management. Another effective strategy is placing cooling devices (heat exchangers) closer to the source of heat. This is the basic design principle of many hybrid cooling systems and liquid cooling systems for data centers. Dynamic thermal management of data centers is a huge challenge, due to the fact that data centers are operated under complex dynamic conditions, even during normal operating conditions. In addition, hybrid cooling systems for data centers introduce additional localized cooling devices, such as in row cooling units and overhead coolers, which significantly increase the complexity of dynamic thermal management. Therefore, it is of paramount importance to characterize the dynamic responses of data centers under variations from different cooling units, such as cooling air flow rate variations. In this study, a detailed computational analysis of an in row cooler based hybrid cooled data center is conducted using a commercially available computational fluid dynamics (CFD) code. A representative CFD model for a raised floor data center with cold aisle-hot aisle arrangement fashion is developed. The hybrid cooling system is designed using perimeter CRAH units and localized in row cooling units. The CRAH unit supplies centralized cooling air to the under floor plenum, and the cooling air enters the cold aisle through perforated tiles. The in row cooling unit is located on the raised floor between the server racks. It supplies the cooling air directly to the cold aisle, and intakes hot air from the back of the racks (hot aisle). Therefore, two different cooling air sources are supplied to the cold aisle, but the ways they are delivered to the cold aisle are different. Several modeling cases are designed to study the transient effects of variations in the flow rates of the two cooling air sources. The server power and the cooling air flow variation combination scenarios are also modeled and studied. The detailed impacts of each modeling case on the rack inlet air temperature and cold aisle air flow distribution are studied. The results presented in this work provide an understanding of the effects of air flow variations on the thermal performance of data centers. The results and corresponding analysis is used for improving the running efficiency of this type of raised floor hybrid data centers using CRAH and IRC units.


1980 ◽  
Vol 106 (1) ◽  
pp. 89-107
Author(s):  
Arthur R. Giaquinta ◽  
Thomas E. Croley ◽  
Tai-Dan Hsu

Sign in / Sign up

Export Citation Format

Share Document