scholarly journals A multi-domain direct boundary element formulation for particulate flow in microchannels

2021 ◽  
Vol 132 ◽  
pp. 221-230
Author(s):  
Alper Topuz ◽  
Besim Baranoğlu ◽  
Barbaros Çetin
2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


1999 ◽  
Vol 36 (24) ◽  
pp. 3617-3638 ◽  
Author(s):  
R. García ◽  
J. Flórez-López ◽  
M. Cerrolaza

2017 ◽  
Vol 08 (03n04) ◽  
pp. 1750007
Author(s):  
Pooneh Maghoul ◽  
Behrouz Gatmiri

This paper presents an advanced formulation of the time-domain two-dimensional (2D) boundary element method (BEM) for an elastic, homogeneous unsaturated soil subjected to dynamic loadings. Unlike the usual time-domain BEM, the present formulation applies a convolution quadrature which requires only the Laplace-domain instead of the time-domain fundamental solutions. The coupled equations governing the dynamic behavior of unsaturated soils ignoring contributions of the inertia effects of the fluids (water and air) are derived based on the poromechanics theory within the framework of a suction-based mathematical model. In this formulation, the solid skeleton displacements [Formula: see text], water pressure [Formula: see text] and air pressure [Formula: see text] are presumed to be independent variables. The fundamental solutions in Laplace transformed-domain for such a dynamic [Formula: see text] theory have been obtained previously by authors. Then, the BE formulation in time is derived after regularization by partial integrations and time and spatial discretizations. Thereafter, the BE formulation is implemented in a 2D boundary element code (PORO-BEM) for the numerical solution. To verify the accuracy of this implementation, the displacement response obtained by the boundary element formulation is verified by comparison with the elastodynamics problem.


Author(s):  
Chong-De Liu ◽  
Jiyuan Yu ◽  
Xiaoming Wang

Abstract The derivation of a boundary integral formulation and discretization technique in terms of boundary elements for the solution of multi-body contact problems has been carried out. A FORTRAN program has been developed based on this boundary element formulation and has been applied to the stress analysis of a huge caterpillar excavator woth 16 m3 bucket capacity.


Author(s):  
Haitao Wang ◽  
Xin Wang

Spherical fuel elements with a diameter of 60mm are basic units of the nuclear fuel for the pebble-bed high temperature gas-cooled reactor (HTR). Each fuel element is treated as a graphite matrix containing around 10,000 randomly distributed fuel particles. The essential safety concept of the pebble-bed HTR is based on the objective that maximum temperature of the fuel particles does not exceed the design value. In this paper, a microstructure-based boundary element model is proposed for the large-scale thermal analysis of a spherical fuel element. This model presents detailed structural information of a large number of coated fuel particles dispersed in a spherical graphite matrix in order that temperature distributions at the level of fuel particles can be evaluated. The model is meshed with boundary elements in conjunction with the fast multipole method (FMM) in order that such large-scale computation is performed only in a personal desktop computer. Taking advantage of the fact that fuel particles are of the same shape, a similar sub-domain approach is used to establish the temperature translation mechanism between various layers of each fuel particle and to simplify the associated boundary element formulation. The numerical results demonstrate large-scale capacity of the proposed method for the multi-level temperature evaluation of the pebble-bed HTR fuel elements.


2005 ◽  
Vol 14 ◽  
pp. 63-71 ◽  
Author(s):  
M. Clerc ◽  
J.-M. Badier ◽  
G. Adde ◽  
J. Kybic ◽  
T. Papadopoulo

Sign in / Sign up

Export Citation Format

Share Document