A half boundary method for two dimensional unsteady convection–diffusion equations

2022 ◽  
Vol 135 ◽  
pp. 322-336
Author(s):  
Yuanyuan Zhao ◽  
Mei Huang ◽  
Xiaoping Ouyang ◽  
Jun Luo ◽  
Yongqing Shen ◽  
...  
2009 ◽  
Vol 11 (2) ◽  
pp. 106-118 ◽  
Author(s):  
Sui Liang Huang

Based on previous work on the transport–transformation model of heavy metal pollutants in fluvial rivers, this paper presents the formulation of a two-dimensional model to describe chemical transport–transformation in fluvial rivers by considering basic principles of environmental chemistry, hydraulics and mechanics of sediment transport and recent developments along with three very simplified test cases. The model consists of water flow governing equations, sediment transport governing equations, transport–transformation equation of chemicals and convection–diffusion equations of sorption–desorption kinetics of particulate chemical concentrations on suspended load, bed load and bed sediment. The chemical transport–transformation equation is basically a mass balance equation. It demonstrates how sediment transport affects transport–transformation of chemicals in fluvial rivers. The convection–diffusion equations of sorption–desorption kinetics of chemicals, being an extension of batch reactor experimental results, take both physical transport, i.e. convection and diffusion, and chemical reactions, i.e. sorption–desorption into account. The effects of sediment transport on chemical transport–transformation were clarified through three simple examples. Specifically, the transport–transformation of chemicals in a steady, uniform and equilibrium sediment-laden flow was calculated by applying this model, and results were shown to be rational. Both theoretical analysis and numerical simulation indicated that the transport–transformation of chemicals in sediment-laden flows with a clay-enriched riverbed possesses not only the generality of common tracer pollutants, but also characteristics of transport–transformation induced by sediment motion. Future work will be conducted to present the validation/application of the model with available data.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 873
Author(s):  
Lina Ji ◽  
Rui Wang

A conditional Lie-Bäcklund symmetry method and differential constraint method are developed to study the radially symmetric nonlinear convection-diffusion equations with source. The equations and the admitted conditional Lie-Bäcklund symmetries (differential constraints) are identified. As a consequence, symmetry reductions to two-dimensional dynamical systems of the resulting equations are derived due to the compatibility of the original equation and the additional differential constraint corresponding to the invariant surface equation of the admitted conditional Lie-Bäcklund symmetry.


2011 ◽  
Vol 9 (4) ◽  
pp. 897-916 ◽  
Author(s):  
Y. V. S. S. Sanyasiraju ◽  
Nachiketa Mishra

AbstractThis paper presents an exponential compact higher order scheme for Convection-Diffusion Equations (CDE) with variable and nonlinear convection coefficients. The scheme is for one-dimensional problems and produces a tri-diagonal system of equations which can be solved efficiently using Thomas algorithm. For two-dimensional problems, the scheme produces an accuracy over a compact nine point stencil which can be solved using any line iterative approach with alternate direction implicit procedure. The convergence of the iterative procedure is guaranteed as the coefficient matrix of the developed scheme satisfies the conditions required to be positive. Wave number analysis has been carried out to establish that the scheme is comparable in accuracy with spectral methods. The higher order accuracy and better rate of convergence of the developed scheme have been demonstrated by solving numerous model problems for one and two-dimensional CDE, where the solutions have the sharp gradient at the solution boundary.


Author(s):  
Hatıra Günerhan

In this work, we have used reduced differential transform method (RDTM) to compute an approximate solution of the Two-Dimensional Convection-Diffusion equations (TDCDE). This method provides the solution quickly in the form of a convergent series. Also, by using RDTM the approximate solution of two-dimensional convection-diffusion equation is obtained. Further, we have computed exact solution of non-homogeneous CDE by using the same method. To the best of my knowledge, the research work carried out in the present paper has not been done, and is new. Examples are provided to support our work.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350053 ◽  
Author(s):  
NACHIKETA MISHRA ◽  
Y. V. S. S. SANYASIRAJU

Exponential compact higher-order schemes have been developed for unsteady convection-diffusion equation (CDE). One of the developed scheme is sixth-order accurate which is conditionally stable for the Péclet number 0 ≤ Pe ≤ 2.8 and the other is fourth-order accurate which is unconditionally stable. Schemes for two-dimensional (2D) problems are made to use alternate direction implicit (ADI) algorithm. Example problems are solved and the numerical solutions are compared with the analytical solutions for each case.


Sign in / Sign up

Export Citation Format

Share Document