scholarly journals Analytical and approximate solution of two-dimensional convection-diffusion problems

Author(s):  
Hatıra Günerhan

In this work, we have used reduced differential transform method (RDTM) to compute an approximate solution of the Two-Dimensional Convection-Diffusion equations (TDCDE). This method provides the solution quickly in the form of a convergent series. Also, by using RDTM the approximate solution of two-dimensional convection-diffusion equation is obtained. Further, we have computed exact solution of non-homogeneous CDE by using the same method. To the best of my knowledge, the research work carried out in the present paper has not been done, and is new. Examples are provided to support our work.

2013 ◽  
Vol 11 (01) ◽  
pp. 1350053 ◽  
Author(s):  
NACHIKETA MISHRA ◽  
Y. V. S. S. SANYASIRAJU

Exponential compact higher-order schemes have been developed for unsteady convection-diffusion equation (CDE). One of the developed scheme is sixth-order accurate which is conditionally stable for the Péclet number 0 ≤ Pe ≤ 2.8 and the other is fourth-order accurate which is unconditionally stable. Schemes for two-dimensional (2D) problems are made to use alternate direction implicit (ADI) algorithm. Example problems are solved and the numerical solutions are compared with the analytical solutions for each case.


1981 ◽  
Vol 48 (2) ◽  
pp. 272-275 ◽  
Author(s):  
Rafael F. Diaz-Munio ◽  
L. Carter Wellford

Approximation procedures for the solution of two-dimensional convection-diffusion problems are introduced. In these procedures finite-element techniques are utilized. The developed solution algorithms are based on a variational method of matched asymptotic expansions. When these techniques are used in conjunction with standard Galerkin methods, to solve convection-diffusion equations, highly accurate solutions are obtained. Numerical results for certain two-dimensional problems are presented to establish the accuracy of the proposed procedures.


2018 ◽  
Vol 5 (2) ◽  
pp. 1-9
Author(s):  
Mohammed G. S. AL-Safi ◽  
Wurood R. Abd AL- Hussein

"In this work, an efficient generalized differential transform method (GDTM) is proposed for solving the twodimensional Volterra-Integro differential equation (2-DVIDE) of fractional order. The results of the proposed method are compared with exact solution, a numerical example is considered for testing the accuracy and validity of this method."


2019 ◽  
Vol 17 (07) ◽  
pp. 1950025
Author(s):  
Yon-Chol Kim

In this paper, we study a compact higher-order scheme for the two-dimensional unsteady convection–diffusion problems using the nearly analytic discrete method (NADM), especially, focusing on the convection dominated-diffusion problems. The numerical scheme is constructed and the stability analysis is implemented. We find the order of accuracy of scheme is [Formula: see text], where [Formula: see text] is the size of time steps and [Formula: see text] the size of spacial steps, especially, making clear the relation between [Formula: see text] and [Formula: see text] is according to the different values of diffusion parameter [Formula: see text] through von Neumann stability analysis. The obtained numerical results for several benchmark problems show that our method makes progress in the numerical study of NADM for convection–diffusion equation and is to be effective and helpful particularly in computations for the convection dominated-diffusion equations and, furthermore, valuable in the numerical treatment of many real-world problems such as MHD natural convection flow.


2013 ◽  
Vol 380-384 ◽  
pp. 1143-1146
Author(s):  
Xiang Guo Liu

The paper researches the parametric inversion of the two-dimensional convection-diffusion equation by means of best perturbation method, draw a Numerical Solution for such inverse problem. It is shown by numerical simulations that the method is feasible and effective.


2009 ◽  
Vol 11 (2) ◽  
pp. 106-118 ◽  
Author(s):  
Sui Liang Huang

Based on previous work on the transport–transformation model of heavy metal pollutants in fluvial rivers, this paper presents the formulation of a two-dimensional model to describe chemical transport–transformation in fluvial rivers by considering basic principles of environmental chemistry, hydraulics and mechanics of sediment transport and recent developments along with three very simplified test cases. The model consists of water flow governing equations, sediment transport governing equations, transport–transformation equation of chemicals and convection–diffusion equations of sorption–desorption kinetics of particulate chemical concentrations on suspended load, bed load and bed sediment. The chemical transport–transformation equation is basically a mass balance equation. It demonstrates how sediment transport affects transport–transformation of chemicals in fluvial rivers. The convection–diffusion equations of sorption–desorption kinetics of chemicals, being an extension of batch reactor experimental results, take both physical transport, i.e. convection and diffusion, and chemical reactions, i.e. sorption–desorption into account. The effects of sediment transport on chemical transport–transformation were clarified through three simple examples. Specifically, the transport–transformation of chemicals in a steady, uniform and equilibrium sediment-laden flow was calculated by applying this model, and results were shown to be rational. Both theoretical analysis and numerical simulation indicated that the transport–transformation of chemicals in sediment-laden flows with a clay-enriched riverbed possesses not only the generality of common tracer pollutants, but also characteristics of transport–transformation induced by sediment motion. Future work will be conducted to present the validation/application of the model with available data.


Sign in / Sign up

Export Citation Format

Share Document