The retrofitting of historical masonry buildings with insufficient seismic resistance using conventional and non-conventional techniques

2019 ◽  
Vol 97 ◽  
pp. 454-463 ◽  
Author(s):  
Baris Sayin ◽  
Baris Yildizlar ◽  
Cemil Akcay ◽  
Baris Gunes
2020 ◽  
Vol 3 (4) ◽  
pp. 289-294
Author(s):  
Embiya Tilki ◽  
Arif Velioğlu ◽  
Barış Sayın

Masonry buildings are ordinarily complex construction systems and there is a lack of knowledge and information concerning the behavior of their seismic response. Due to the life safety of masonry buildings under seismic effects are very essential, numerical modeling and analysis of the buildings are an important issue. Because of the insufficient seismic resistance on structural members such as jack arch slabs and masonry walls, numerical studies have become necessary to determine the level of the structural strength of the structures. The tensile strength of load-bearing walls in the buildings is lower whereas, the compressive strength is higher. In this way, tensile cracks occur at structural members due to insufficient tensile resistance. Therefore, the tensile stress locations in the structure are critical. The study focuses on the assessment of historical masonry buildings from the point of seismic resistance. The entire process is performed using a case study from a historical masonry building. In this study conducted in this respect, the existing situation of a historical building using numerical analyses were presented with the cross-disciplinary study of civil engineering and architecture. The linear elastic analysis is selected as an analysis method. The seismic parameters are determined based on the Turkish Earthquake Code (TBEC 2018). Consequently, the study is performed to determine the seismic-resistant of historical buildings within the scope of numerical analyses.


2021 ◽  
Vol 898 ◽  
pp. 1-7
Author(s):  
Ingrid Boem ◽  
Natalino Gattesco

Historic masonry buildings experience a high seismic vulnerability: innovative intervention strategies for strengthening, based on the use of fibre-based composite materials are gradually spreading. In particular, the coupling of fibre-based materials with mortar layers (Fibre Reinforced Mortar technique - FRM) evidenced a good chemical and mechanical compatibility with the historical masonry and proved to be effective for the enhancement of both in-plane and out-of-plane performances of masonry, contrasting the opening of cracks and improving both resistance and ductility. The resistant mechanisms that arise in FRM strengthened masonry walls subjected to in-plane horizontal actions are analyzed in the paper and a practical design approach to evaluate their performances is illustrated, evidencing the dominant collapse mode at the varying of the masonry characteristics. Some masonry walls are analyzed numerically and analytically, as “case study”.


Author(s):  
Aliaksandr Bakatovich ◽  
Nadezda Davydenko ◽  
Aliaksandr Ivanenko ◽  
Anton Finogenov ◽  
Yahor Lazouski

2020 ◽  
Vol 250 ◽  
pp. 118937 ◽  
Author(s):  
Jože Luzar ◽  
Andreja Padovnik ◽  
Petra Štukovnik ◽  
Marjan Marinšek ◽  
Zvonko Jagličić ◽  
...  

2011 ◽  
Vol 255-260 ◽  
pp. 2622-2626 ◽  
Author(s):  
Azmat Ullah ◽  
Khan Shahzada ◽  
Akhtar Naeem Khan ◽  
Amjad Naseer ◽  
Mohammad Ashraf ◽  
...  

This paper presents a study on seismic resistance of typical single and double storey masonry buildings constructed in the southern districts of Pakhthunkhwa, Pakistan. Two types of bricks; wooden and rice husk burnt bricks, have been investigated in combination with mud and cement-sand mortar. Plane and reinforced specimens have been tested in axial compression and diagonal compression. Analysis of the experimental results show that both single and double storey buildings constructed in the study area with mud mortar and mud plaster are seismically vulnerable. However application of the wire mesh on wall surface subsequently plastered increases the strength significantly and make the structure resistant to the earthquake forces.


Author(s):  
Marina Latinović

In this paper, the principle of application of the FEMA310 document for seismic evaluation of existing buildings is briefly illustrated, for any building type, and examples of evaluation are given for the first and second tier of evaluation process, for two types of masonry structures. The application of this document at tier one and tier two of the evaluation process is a conservative, simplified way of determining seismic resistance, based on many experiential data and including the most important parameters of buildings that can affect seismic resistance. Instructions given by FEMA310 are easy to apply, but are adapted to US standards. Two examples for evaluation of masonry buildings on first and second tier of evaluation are given, for masonry buildings with rigid and flexible diaphragmas.


Author(s):  
Alberto Viskovic

The static and seismic retrofitting design, for masonry historical buildings, has to follow a right hierarchy of interventions, taking into account that to improve the seismic behavior of a masonry structure, it is necessary to guarantee a “closed box” behavior for the whole structural body or, in case of complex buildings, to guarantee a closed box behavior for each building's wing. Thus it is fundamental to distinguish the interventions for the global behavior improvement from those related to local reinforcements. In this chapter is then proposed a scheme of interventions hierarchy and, therefore, a related design process road-map together with the explanation of a correct design philosophy for the static and seismic retrofitting of historical masonry buildings. Moreover it is also reported an example of two distinguished levels of intervention, with numerical analyses supporting that solution.


Sign in / Sign up

Export Citation Format

Share Document