Seismic performance and repair of Chuan-dou timber-framed masonry building

2020 ◽  
Vol 118 ◽  
pp. 104941
Author(s):  
Cunyu Cui ◽  
Zhanhong Li ◽  
Yang Chen ◽  
Qiyun Zhu
2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


2017 ◽  
Vol 11 (04) ◽  
pp. 1750012
Author(s):  
Vail Karakale

Historic buildings and monuments are an important part of our cultural heritage that must be protected and their sustainability ensured, especially when earthquakes occur. In this paper, a technique that uses structural steel frames is proposed as one way of strengthening unreinforced masonry (URM) in historical buildings. The idea underpinning this technique is to reduce the earthquake displacement demand on non-ductile URM walls by attaching steel frames to the building floors from inside. These frames run parallel to the structural system of the building and are fixed at their base to the existing foundation of the building. Furthermore, they are constructed rapidly, do not occupy architectural space, save the building’s historic fabric, and can be easily replaced after an earthquake if some minor damage ensues. The proposed technique was applied to a five-story historical masonry building in Istanbul. The results of seismic performance analysis indicate that even though the building has plan irregularities, the proposed steel frames are able to effectively enhance the building’s seismic performance by reducing inter-story drifts and increasing lateral stiffness and strength.


2019 ◽  
Vol 18 (2) ◽  
pp. 609-643 ◽  
Author(s):  
Ilaria E. Senaldi ◽  
Gabriele Guerrini ◽  
Paolo Comini ◽  
Francesco Graziotti ◽  
Andrea Penna ◽  
...  

2018 ◽  
Vol 161 ◽  
pp. 231-249 ◽  
Author(s):  
Stylianos Kallioras ◽  
Gabriele Guerrini ◽  
Umberto Tomassetti ◽  
Beatrice Marchesi ◽  
Andrea Penna ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 151-157
Author(s):  
Hoijin Kim ◽  
Zheongzun Yi ◽  
Jongsup Park ◽  
Junsuk Kang

Due to the increase in the frequency and intensity of earthquakes and the number of old buildings and in Korea, there is an expected increase in the damage to life and property. Therefore, we intend to derive an indicator to evaluate the risk level by conducting a seismic test on old buildings. An initial crack was generated in the masonry structure to reflect the deterioration. The effect of the deterioration on the building was subsequently analyzed by comparing it with the uncracked control group. As a result, the masonry wall, which was the specimen, satisfied the seismic performance, but local failure occurred along the initial crack in the specimen considering the aging. The safety was significantly decreased due to the occurrence of additional cracks. This demonstrates that the cracks caused by the aging of the masonry building greatly damaged the seismic performance of the building.


2011 ◽  
Vol 250-253 ◽  
pp. 1196-1205
Author(s):  
Zhong Fan Chen ◽  
Fei Lu ◽  
Yang Yuan ◽  
Sha Sha Miao

Rowlock cavity wall was widely used in rural house in Southern Jiangsu Province from 1980s to 1990s. As one type of masonry structures, the seismic performance of rowlock cavity wall has rarely been studied on. Based on the report of General Seismic Investigation in Jiangsu Qidong, one 1/2-scale rowlock cavity wall structure was modeled as the existing rural house, and was tested on shaking table in lab of Southeast University. After analyzing the failure state of the model, and examining the structural parameters such as natural frequency, damping ratio, floor acceleration, floor shift, strain and crack of the model in load condition of different earthquake wave and intensity, the seismic performance of rowlock wall structure was assessed. And the seismic capacity of the whole model and each piece of rowlock wall was also analyzed. Based on the mortar strength field inspected in model wall, the seismic capacity of model structure under the action of rarely occurred earthquake of level 6 seismic precautionary intensity was estimated. The result showed that the model structure would collapse under the load condition. Obviously, this can not satisfy the seismic precautionary requirement in Code for Seismic Design of Buildings (GB50011-2001). Therefore, some principal reinforcement suggestions were discussed and proposed for existing rowlock cavity wall buildings. The research result of this paper could provide some theoretical foundation for the Aseismic Residential Project of rural peasant house, and also could be referred to for further research on rowlock cavity wall structures.


Sign in / Sign up

Export Citation Format

Share Document