scholarly journals SEISMIC PERFORMANCE OF A MASONRY BUILDING ISOLATED WITH LOW-COST RUBBER ISOLATORS

Author(s):  
AHMAD B. HABIEB ◽  
GABRIELE MILANI ◽  
TAVIO ◽  
FEDERICO MILANI
2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


2013 ◽  
Vol 351-352 ◽  
pp. 1532-1536 ◽  
Author(s):  
Bin Ding ◽  
Li Jun Ouyang ◽  
Zhou Dao Lu ◽  
Wei Zhen Chen

BFRP has excellent strength, durability, thermal properties and economic cost. To test seismic performance of short columns strengthened with BFRP. Low cyclic loading test was conducted on one comparative short column and two RC short columns strengthened with BFRP. The test shows that short columns warped by BFRP show excellent failure modes, shear capacity, ductility and energy dissipation. As a new fiber reinforced plastic, BFRP has a good prospect in the area of seismic strengthening for its low cost and comprehensive mechanical properties.


2020 ◽  
Vol 118 ◽  
pp. 104941
Author(s):  
Cunyu Cui ◽  
Zhanhong Li ◽  
Yang Chen ◽  
Qiyun Zhu

2021 ◽  
Vol 141 ◽  
pp. 106501
Author(s):  
Daniele Losanno ◽  
Nagavinothini Ravichandran ◽  
Fulvio Parisi ◽  
Andrea Calabrese ◽  
Giorgio Serino

2017 ◽  
Vol 11 (04) ◽  
pp. 1750012
Author(s):  
Vail Karakale

Historic buildings and monuments are an important part of our cultural heritage that must be protected and their sustainability ensured, especially when earthquakes occur. In this paper, a technique that uses structural steel frames is proposed as one way of strengthening unreinforced masonry (URM) in historical buildings. The idea underpinning this technique is to reduce the earthquake displacement demand on non-ductile URM walls by attaching steel frames to the building floors from inside. These frames run parallel to the structural system of the building and are fixed at their base to the existing foundation of the building. Furthermore, they are constructed rapidly, do not occupy architectural space, save the building’s historic fabric, and can be easily replaced after an earthquake if some minor damage ensues. The proposed technique was applied to a five-story historical masonry building in Istanbul. The results of seismic performance analysis indicate that even though the building has plan irregularities, the proposed steel frames are able to effectively enhance the building’s seismic performance by reducing inter-story drifts and increasing lateral stiffness and strength.


2019 ◽  
Vol 18 (2) ◽  
pp. 609-643 ◽  
Author(s):  
Ilaria E. Senaldi ◽  
Gabriele Guerrini ◽  
Paolo Comini ◽  
Francesco Graziotti ◽  
Andrea Penna ◽  
...  

2018 ◽  
Vol 161 ◽  
pp. 231-249 ◽  
Author(s):  
Stylianos Kallioras ◽  
Gabriele Guerrini ◽  
Umberto Tomassetti ◽  
Beatrice Marchesi ◽  
Andrea Penna ◽  
...  

Author(s):  
Stefano Pampanin

Earthquake Engineering is facing an extraordinarily challenging era, the ultimate target being set at increasingly higher levels by the demanding expectations of our modern society. The renewed challenge is to be able to provide low-cost, thus more widely affordable, high-seismic-performance structures capable of sustaining a design level earthquake with limited or negligible damage, minimum disruption of business (downtime) or, in more general terms, controllable socio-economical losses. The Canterbury earthquakes sequence in 2010-2011 has represented a tough reality check, confirming the current mismatch between societal expectations over the reality of seismic performance of modern buildings. In general, albeit with some unfortunate exceptions, modern multi-storey buildings performed as expected from a technical point of view, in particular when considering the intensity of the shaking (higher than new code design) they were subjected to. As per capacity design principles, plastic hinges formed in discrete regions, allowing the buildings to sway and stand and people to evacuate. Nevertheless, in many cases, these buildings were deemed too expensive to be repaired and were consequently demolished. Targeting life-safety is arguably not enough for our modern society, at least when dealing with new building construction. A paradigm shift towards damage-control design philosophy and technologies is urgently required. This paper and the associated presentation will discuss motivations, issues and, more importantly, cost-effective engineering solutions to design buildings capable of sustaining low-level of damage and thus limited business interruption after a design level earthquake. Focus will be given to the extensive research and developments in jointed ductile connections based upon controlled rocking & dissipating mechanisms for either reinforced concrete and, more recently, laminated timber structures. An overview of recent on-site applications of such systems, featuring some of the latest technical solutions developed in the laboratory and including proposals for the rebuild of Christchurch, will be provided as successful examples of practical implementation of performance-based seismic design theory and technology.


Sign in / Sign up

Export Citation Format

Share Document