Experimental seismic performance of a full-scale unreinforced clay-masonry building with flexible timber diaphragms

2018 ◽  
Vol 161 ◽  
pp. 231-249 ◽  
Author(s):  
Stylianos Kallioras ◽  
Gabriele Guerrini ◽  
Umberto Tomassetti ◽  
Beatrice Marchesi ◽  
Andrea Penna ◽  
...  
2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.


2020 ◽  
Vol 118 ◽  
pp. 104941
Author(s):  
Cunyu Cui ◽  
Zhanhong Li ◽  
Yang Chen ◽  
Qiyun Zhu

2013 ◽  
Vol 8 (3) ◽  
pp. 349-375 ◽  
Author(s):  
Guido Magenes ◽  
Andrea Penna ◽  
Ilaria Enrica Senaldi ◽  
Maria Rota ◽  
Alessandro Galasco

2011 ◽  
Vol 255-260 ◽  
pp. 319-323 ◽  
Author(s):  
Mohammad Ashraf ◽  
Akhtar Naeem Khan ◽  
Qaisar Ali ◽  
Khan Shahzada ◽  
Amjad Naseer

This paper presents a study on the behavior of a damaged full scale unreinforced brick masonry building, retrofitted with ferrocement overlay and cement based grout injection, tested under cyclic loading. Damage mechanism and force-deformation behavior of the retrofitted structure are compared with its pre-damaged response to quantify the beneficial effects of retrofitting scheme. The lateral load capacity of the retrofitted building was significantly improved and the damage mechanism was transformed from mixed compression-flexural-shear mode to a more stable flexural rocking mode. The energy dissipation capacity, however, remained unchanged and the deformation capacity was slightly decreased.


2017 ◽  
Vol 11 (04) ◽  
pp. 1750012
Author(s):  
Vail Karakale

Historic buildings and monuments are an important part of our cultural heritage that must be protected and their sustainability ensured, especially when earthquakes occur. In this paper, a technique that uses structural steel frames is proposed as one way of strengthening unreinforced masonry (URM) in historical buildings. The idea underpinning this technique is to reduce the earthquake displacement demand on non-ductile URM walls by attaching steel frames to the building floors from inside. These frames run parallel to the structural system of the building and are fixed at their base to the existing foundation of the building. Furthermore, they are constructed rapidly, do not occupy architectural space, save the building’s historic fabric, and can be easily replaced after an earthquake if some minor damage ensues. The proposed technique was applied to a five-story historical masonry building in Istanbul. The results of seismic performance analysis indicate that even though the building has plan irregularities, the proposed steel frames are able to effectively enhance the building’s seismic performance by reducing inter-story drifts and increasing lateral stiffness and strength.


Sign in / Sign up

Export Citation Format

Share Document