Study on Rational Ratios of Lateral Stiffness for Masonry Building with Frame Structure at First Two Stories

2012 ◽  
Vol 174-177 ◽  
pp. 2012-2015
Author(s):  
Xiao Long Zhou ◽  
Ying Min Li ◽  
Lin Bo Song ◽  
Qian Tan

There are two typical seismic damage characteristics to the masonry building with frame shear wall structure at first two stories, and the lateral stiffness ratio of the third storey to the second storey is one of the key factors mostly affecting the seismic performance of this kind of building. However, some factors are not considered sufficiently in current Chinese seismic codes. According to the theory of performance-based seismic design, the seismic performance of this kind of structure is analyzed in this paper by taking time-history analysis on models which with different storey stiffness ratios. The results show that when the lateral stiffness ratio controlled in a reasonable range, the upper masonry deformation can be ensured in a range of elastic roughly, and the bottom frame can be guaranteed to have sufficient deformation and energy dissipation capacity. Finally, according to the seismic performance characteristics of masonry building with frame shear wall structure at first two stories, especially the characteristics under strong earthquakes, a method of simplified calculation model for the upper masonry is discussed in this paper.

2013 ◽  
Vol 477-478 ◽  
pp. 784-787
Author(s):  
Yi Zhen Yang ◽  
Hong Gan

Frame shear wall structure as a high-rise building one of the most widely used structure form, has good seismic performance and high bearing capacity, the frame shear wall structure research focused on the study of shear wall quantity more, pay attention to consider shear wall quantity and the intrinsic relationships between shear wall lateral stiffness and to seek the optimal design of shear wall stiffness, ignores the position of the shear wall, on the whole architecture of the influence of lateral stiffness, and can go, is set the location of the shear wall is difficult to study, this article will focus on the research of location of shear wall structure seismic performance, provide reference for the future of this kind of structure design.


2011 ◽  
Vol 243-249 ◽  
pp. 447-452
Author(s):  
De Jian Yang ◽  
Sai Lan Mao

The paper analyses the damages of the frame structure with bottom weak layer considering of Wenchuan earthquake. The analysis result indicates the current design method "pure frame" is imperfect. The related research shows that important reason for the bottom weak layer’s breakage is the stiffness mutation which is caused by the filler wall. If we arranged partial shear wall structure in the bottom weak layer, the adverse effects of stiffness mutation will be decreased, and improve the seismic performance of the frame structure with bottom weak layer.


2020 ◽  
Vol 980 ◽  
pp. 231-238
Author(s):  
Xin Sheng Yin ◽  
Xiao Wei Liu

In order to respond to the construction policy of "economy, application, green and beauty" put forward by China in the new period, the assembly structure has gradually become the focus of attention in recent years. Compared with the traditional cast-in-place structure, the assembled structure is more in line with the requirements of energy-saving, material-saving, environmental protection, etc. Therefore, it is of great importance to further study the seismic performance of assembled structures. However, existing assembled shear wall structures often suffer from problems such as the joint position is difficult to construct because of its wet work, and strong component weak nodes often appear. The seismic performance of the joints needs to be further studied and so on. Aiming to solve above problems, a new type of pre-stressed constraint assembled shear wall structure was proposed by us. The structure is connected by pre-stressed tendon to shear wall, and there is no wet operation at the construction site, which is conductive to improving construction quality. When the earthquake occurs, the structure can increase its self-shock period by changing its own stiffness, so as to reduce the earthquake stress. Meanwhile, many conditions to improve the ductility of the structure do not need to be considered, thus avoid the waste of steel materials. Based on the time history analysis of cast-in-place shear wall structure model and pre-stressed shear wall structure model, the results of calculation show that: compared with cast-in-place shear wall structure, the pre-stressed shear wall structure can effectively reduce the earthquake effect by about 90%.


2012 ◽  
Vol 226-228 ◽  
pp. 967-971
Author(s):  
Ji Xing Yuan ◽  
Qing Zhang

In this paper a super high-rise frame-core wall as an example, It was analyzed the frame-core wall structure system under action of earthquake force features, set reasonable seismic performance objectives, analysis the structure reasonable failure mode, made it have enough bearing capacity and ductility for a reasonable design of frame and coupling wall-beam, could make the frame-core wall structure with multiple seismic fortification lines, improve the seismic performance of the frame-core wall structure. Finally, the action of earthquake deformation and seismic shear force distribution was analyzed through the elastic dynamic time-history analysis. After a reasonable optimization analysis showed: Frame-core wall structure could have three seismic fortification lines: coupling beams, core wall, frame structure, and had enough energy dissipation ability at the same time, could form the rational failure mode, improved the seismic performance of the structure.


2014 ◽  
Vol 919-921 ◽  
pp. 981-988
Author(s):  
Jin Xuan Chen ◽  
Yan Wei Liu ◽  
Ju Rui Yang ◽  
Xiao Xia Hou

The paper focused on the seismic performance of ceramsite concrete frame—shear wall, which conducted the modal analysis and elasto-plastic time history analysis for 6 layers ceramsite concrete frame—shear wall and ordinary concrete frame—shear wall by software SAP2000. Then compared the results, which showed that the periods of ceramsite concrete frame—shear wall structure was longer than the ordinary concrete frame—shear wall structure, while the inter-storey drift ratio and the maximum absolute acceleration are less than ordinary concrete frame—shear wall. Besides, the largest base shear of ceramsite concrete frame—shear wall structure was less than ordinary concrete frame—shear wall structure. And the seismic performance of ceramsite concrete frame—shear wall showed was better than ordinary concrete frame—shear wall structure.


2013 ◽  
Vol 368-370 ◽  
pp. 1043-1047
Author(s):  
Yin Zhang ◽  
You Han ◽  
Shuai Liang

Ecological composite wall as ecological composite wall structure of the main stress components, the seismic performance is ecological composite wall structure seismic performance evaluation system of the main content. Based on the grey system theory, the grey correlation analysis to the key parameters (the mouth of the cave, frame structure, height to width ratio) change ecological composite wall test results are analyzed, the key parameters on the ecological composite wall the influence law of seismic performance, for choosing wall structure design method to provide basis.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940003 ◽  
Author(s):  
Xiaoyan Yang ◽  
Jing Wu ◽  
Jian Zhang ◽  
Yulong Feng

A novel structural wall with hinge support and buckling restrained braces (BRBs) set in the base (HWBB) is studied. HWBB can be applied to precast manufacturing due to its considerable ductility and the separate loading mechanism in HWBB–frame structure. In elastic stage, BRBs play a brace role to make the hinged wall resist horizontal forces like a shear wall. BRBs dissipate seismic energy through plastic and hysteresis effects after yielding and the damage is only concentrated in BRBs. The performance of an HWBB is equivalent to a shear wall structure with excellent ductility and stable energy dissipation capacity. Numerical analysis indicates that the hinged wall body in the HWBB well controls the deformation mode of the structure, avoiding the concentration of story drifts, thereby protecting the remaining parts of the structure. It is revealed that the moments of the wall body will generate significant increments after BRBs yielding, and the Seismic Intensity Superposition Method is proposed to calculate the moments. In this method, nonlinear response of an HWBB can be regarded as the sum of the responses of two elastic corresponding structures excited with two parts of the seismic intensity, respectively. Modes and moments equations of the hinged wall with uniform distribution of stiffness and mass are derived, and calculation results coincide with that of the nonlinear time history analysis (NHA). For a more general case, the white noise scan method is proposed to solve the structure’s natural characteristics and to further calculate the response. Finally, the post-yielding moment calculation method and the process based on design response spectrum are proposed. It is proved that the moments from proposed Seismic Intensity Superposition Method can envelop most of the moments from NHA, and it is a good estimate of the response of HWBB in nonlinear stage.


2017 ◽  
Vol 865 ◽  
pp. 306-312
Author(s):  
Zheng Li ◽  
Heng Zhou ◽  
Li Qin

A reduced-scale model of 7-story reinforced concrete shear wall structure is made. Shaking-table test of the model is carried out. Two test conditions are considered. In the first condition, fixed base is used. In another condition, soil structure interaction is considered. According to the experimental results, the dynamic characteristic and seismic performance of shear wall structure is studied. The acceleration time history response of model structure is obtained. Based on the time-history response, the dynamic characteristics of model structure are studied by spectrum analysis. The Finite Element Model of actural structure is established by ANSYS. The dynamic characteristics and seismic performance of actural structure are studied. By comparing the experiment results and numerical analysis results under the fixed-base condition, the rationality of the ANSYS model and numerical analysis method of are verified.


2012 ◽  
Vol 166-169 ◽  
pp. 2209-2215
Author(s):  
Zhi Xin Wang ◽  
Hai Tao Fan ◽  
Huang Juan Zhao

Finite element models of frames with steel-bracings and with concrete filled steel tube struts are built in ETABS. Seismic performance of these models is analyzed with base-shear method, superposition of modal responses method and time history method respectively. The results show that the steel-bracings or concrete filled steel tube struts are efficient to increase the story-stiffness, and the top displacement of the frame structure decreases significantly.


Sign in / Sign up

Export Citation Format

Share Document