The boundary condition simulation quality for embankment seismic response

Author(s):  
Abdoullah Namdar
2012 ◽  
Vol 268-270 ◽  
pp. 729-732
Author(s):  
Jin Xi Duan ◽  
Z. Shen

The finite element formulations of steel-concrete composite (SCC) beams considering interlayer slip with end shear restraint is established. Elastic seismic response of SCC frame structures under different shear connection stiffness and slip boundary conditions are examined. The influences of the shear connection stiffness and the slip boundary condition on elastic seismic response are analyzed. With the shear connection stiffness increasing, the free vibration frequencies increase and the seismic responses decrease. The natural vibration properties of SCC frame structures and seismic responses are also significantly affected by the slip boundary condition, and it should be properly imposed on all composite beams in seismic response analysis.


2001 ◽  
Vol 22 (5) ◽  
pp. 35-40 ◽  
Author(s):  
D. C. Look Jr ◽  
Arvind Krishnan

2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


Sign in / Sign up

Export Citation Format

Share Document