Analysis of mixed-mode dynamic crack propagation by interface element based on virtual crack closure technique

2007 ◽  
Vol 74 (5) ◽  
pp. 807-814 ◽  
Author(s):  
Qin Qian ◽  
De Xie
2014 ◽  
Vol 998-999 ◽  
pp. 31-34
Author(s):  
Guang Ming Kong ◽  
Xu Dong Li ◽  
Zhi Tao Mu

Using the virtual crack closure technique (VCCT), an interface element that can calculate stress intensity factors (SIFs) directly and simulate the crack propagation conveniently has been developed. Based on an accelerated corrosion experiment, the fatigue crack propagation behavior of the 6151-T6 aluminum alloys under different corrosion years and stress levels were simulated, and it was proved to be convenient to calculate strain energy release rate and SIFs of AA 6151-T6 under different stress levels and corrosion years. The proposed method is characterized by higher accuracy and less calculation elements, provides a new way for engineering fracture analysis of the structure.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Li Ming Zhou ◽  
Guang Wei Meng ◽  
Xiao Lin Li ◽  
Feng Li

Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM) plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT) was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.


2010 ◽  
Vol 77 (14) ◽  
pp. 2864-2880 ◽  
Author(s):  
Addis Kidane ◽  
Vijaya B. Chalivendra ◽  
Arun Shukla ◽  
Ravi Chona

2001 ◽  
Author(s):  
S. K. Dwivedi ◽  
H. D. Espinosa

Abstract Dynamic crack propagation in an unidirectional Carbon/Epoxy composite is studied through finite element analyses in total Lagrangian co-ordinates. A finite deformation anisotropic visco-plastic model is used to describe the constitutive response of the composite. Crack initiation and propagation is simulated by embedding zero thickness interface element along the possible crack path. An irreversible cohesive law is used to describe the evolution of normal and shear tractions as a function of displacement jumps. The compressive response prior to interface failure is analyzed using contact impenetrability conditions. The failure of the first interface element at the pre-notch tip models crack initiation. Crack propagation is modeled through consecutive failure of interface elements. Dynamic crack propagation phenomena are studied in terms of crack initiation time, crack speed, mode I and mode II displacement jumps and tractions associated with the failure of interface elements, effective plastic strain at the crack tip and path independent integral J′. Analyses are first carried out for the dynamic crack propagation along bi-material interfaces. The results obtained from present analyses agree well with literature data. Detailed analyses are carried out for a pre-notched unidirectional Carbon/Epoxy composite material. The impact velocity in the analyses is an imposed velocity over an assumed impact region and remains constant throughout the analysis. Analyses are carried out at impact velocities of 5, 10, 20, 30 and 40 m/s, assuming the crack wake is frictionless. Moreover, analyses at impact velocities of 30 and 40 m/s are also carried out with a friction coefficient of 0.5 along the crack surfaces. The analyses established intersonic crack speed in the fiber reinforced composite material. Intersonic crack propagation for the impact velocities of 40 m/s is 400% of the shear wave speed and 87% of the longitudinal wave speed. Detailed discussion is given on the features of sub-sonic and intersonic crack propagation in Carbon/Epoxy composite materials. It is shown that the friction coefficient along the crack surface plays an important role by smearing the discontinuous field that develops behind the crack tip and by reducing crack speed in the intersonic regime. The analyses show that the contour integral J′ computed at near field contours are path independent and can serve as a parameter for characterizing intersonic crack propagation.


Sign in / Sign up

Export Citation Format

Share Document