Numerical simulations and experimental measurements of the stress intensity factor in perforated plates

2008 ◽  
Vol 75 (15) ◽  
pp. 4383-4393 ◽  
Author(s):  
Antonino Cirello ◽  
Franco Furgiuele ◽  
Carmine Maletta ◽  
Antonino Pasta
2012 ◽  
Vol 166-169 ◽  
pp. 2995-2998
Author(s):  
Geng Chen ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

The principle of the structure of displacement function, the establishment of governing equations, level set method were briefly outlined in this paper. Numerical simulations on three dimensional single edge notched specimens with different crack length in tension were performed using Abaqus software based on extended finite element method (XFEM), the stress intensity factor at static crack front was analyzed and the simulated results were in good agreement with analytical solutions. Numerical simulations in the present paper indicated that the extended finite element method is very suitable to deal with nonlinear fracture problems.


2021 ◽  
Vol 18 (1) ◽  
pp. 10-16
Author(s):  
Iago Freitas de Almeida ◽  
Gelson De Sousa Alves ◽  
Nelson Afanador- García

The objective of this work is to verify the influence of the stress intensity factor in the linear elastic fracture mechanics model. The model consists in a Disk-shaped Compact Tension specimen (DCT) of concrete material. The methodology considers a comparative study of an analytical approach from the literature and numerical simulations. These numerical simulations are performed in ANSYS Workbench program by the use of the Finite Element Method (FEM). The results show that the solutions obtained are satisfactory for the comparative study.  


2021 ◽  
Vol 21 (1) ◽  
pp. 27-37
Author(s):  
Ahmed Obaid Mashjel ◽  
Rafil Mahmood Laftah ◽  
Hassanein Ibraheem Khalaf

n this study, loading was carried out for several types of perforated plates, such as circular, rhombic and rectangular holes, where the holes were arranged in two types, namely straight arrangement and alternating arrangement. The stress intensity factor and shape factor were calculated for each case, taking into account the diameter of the holes. So, it is found the SIF increases significantly when the plate is perforated, and the same applies to the shape factor, also increases. In the case of circular holes, the increases in the average value of (SIF) reached to (80.88 %) when the plate was perforated with alternated arranged of circular holes, while the straight arrangement of circular holes the increases of average values of SIF reach to (67.55 %). Either in the case of rhombus holes: the SIF values are increases to (51.07 %) when the plate was perforated with the alternated arrangement, while in the straight arrangement of holes the (SIF) increase to (35.43 %). It was observed through this study, the increases of stress intensity factor and the shape factor with different crack lengths were more stable in the plate that perforated with an alternated arrangement of holes than the straight arrangement. The higher values of stress intensity factor obtained when the plates were perforated with circular holes, due to the circular shape has more stiffness, so the Absorption of force will be small Compared with the rhombus and rectangular shape that will be less stiffness which the absorption of strength is greater.


2020 ◽  
Vol 86 (10) ◽  
pp. 46-55
Author(s):  
S. I. Eleonsky ◽  
Yu. G. Matvienko ◽  
V. S. Pisarev ◽  
A. V. Chernov

A new destructive method for quantitative determination of the damage accumulation in the vicinity of a stress concentrator has been proposed and verified. Increase of damage degree in local area with a high level of the strain gradient was achieved through preliminary low-cycle pull-push loading of plane specimens with central open holes. The above procedure is performed for three programs at the same stress range (333.3 MPa) and different stress ratio values 0.33, – 0.66 and – 1.0, and vice versa for two programs at the same stress ratio – 0.33 and different stress range 333.3 and 233.3 MPa. This process offers a set of the objects to be considered with different degree of accumulated fatigue damages. The key point of the developed approach consists in the fact that plane specimens with open holes are tested under real operation conditions without a preliminary notching of the specimen initiating the fatigue crack growth. The measured parameters necessary for a quantitative description of the damage accumulation process were obtained by removing the local volume of the material in the form of a sequence of narrow notches at a constant level of external tensile stress. External load can be considered an amplifier enhancing a useful signal responsible for revealing the material damage. The notch is intended for assessing the level of fatigue damage, just as probe holes are used to release residual stress energy in the hole drilling method. Measurements of the deformation response caused by local removing of the material are carried out by electronic speckle-pattern interferometry at different stages of low-cycle fatigue. The transition from measured in-plane displacements to the values of the stress intensity factor (SIF) and the T-stress was carried out on the basis of the relations of linear fracture mechanics. It was shown that the normalized dependences of the stress intensity factor on the durability percentage for the first notch (constructed for four programs of cyclic loading with different parameters), reflect the effect of the stress ratio and stress range of the loading cycle on the rate of damage accumulation. The data were used to obtain the explicit form of the damage accumulation function that quantitatively describes damage accumulation process. The functions were constructed for different stress ratios and stress ranges.


2019 ◽  
Vol 485 (2) ◽  
pp. 162-165
Author(s):  
V. A. Babeshko ◽  
O. M. Babeshko ◽  
O. V. Evdokimova

The distinctions in the description of the conditions of cracking of materials are revealed. For Griffith–Irwin cracks, fracture is determined by the magnitude of the stress-intensity factor at the crack tip; in the case of the new type of cracks, fracture occurs due to an increase in the stress concentrations up to singular concentrations.


Sign in / Sign up

Export Citation Format

Share Document