Damage accumulation near a hole under low cycle fatigue proceeding from measurements of local deformation response

2020 ◽  
Vol 86 (10) ◽  
pp. 46-55
Author(s):  
S. I. Eleonsky ◽  
Yu. G. Matvienko ◽  
V. S. Pisarev ◽  
A. V. Chernov

A new destructive method for quantitative determination of the damage accumulation in the vicinity of a stress concentrator has been proposed and verified. Increase of damage degree in local area with a high level of the strain gradient was achieved through preliminary low-cycle pull-push loading of plane specimens with central open holes. The above procedure is performed for three programs at the same stress range (333.3 MPa) and different stress ratio values 0.33, – 0.66 and – 1.0, and vice versa for two programs at the same stress ratio – 0.33 and different stress range 333.3 and 233.3 MPa. This process offers a set of the objects to be considered with different degree of accumulated fatigue damages. The key point of the developed approach consists in the fact that plane specimens with open holes are tested under real operation conditions without a preliminary notching of the specimen initiating the fatigue crack growth. The measured parameters necessary for a quantitative description of the damage accumulation process were obtained by removing the local volume of the material in the form of a sequence of narrow notches at a constant level of external tensile stress. External load can be considered an amplifier enhancing a useful signal responsible for revealing the material damage. The notch is intended for assessing the level of fatigue damage, just as probe holes are used to release residual stress energy in the hole drilling method. Measurements of the deformation response caused by local removing of the material are carried out by electronic speckle-pattern interferometry at different stages of low-cycle fatigue. The transition from measured in-plane displacements to the values of the stress intensity factor (SIF) and the T-stress was carried out on the basis of the relations of linear fracture mechanics. It was shown that the normalized dependences of the stress intensity factor on the durability percentage for the first notch (constructed for four programs of cyclic loading with different parameters), reflect the effect of the stress ratio and stress range of the loading cycle on the rate of damage accumulation. The data were used to obtain the explicit form of the damage accumulation function that quantitatively describes damage accumulation process. The functions were constructed for different stress ratios and stress ranges.

2005 ◽  
Vol 297-300 ◽  
pp. 1120-1125 ◽  
Author(s):  
Myung Hwan Boo ◽  
Chi Yong Park

In order to study the influence of stress ratio and WC grain size, the characteristics of fatigue crack growth were investigated in WC-Co cemented carbides with two different grain sizes of 3 and 6 µm. Fatigue crack growth tests were carried out over a wide range of fatigue crack growth rates covering the threshold stress intensity factor range DKth. It was found that crack growth rate da/dN against stress intensity factor range DK depended on stress ratio R. The crack growth rate plotted in terms of effective stress intensity factor range DKeff still exhibited the effect of microstructure. Fractographic examination revealed brittle fracture at R=0.1 and ductile fracture at R=0.5 in Co binder phase. The amount of Co phase transformation for stress ratio was closely related to fatigue crack growth characteristics.


2014 ◽  
Vol 891-892 ◽  
pp. 434-439 ◽  
Author(s):  
Noriyasu Oguma ◽  
Naoya Sekisugi ◽  
Katsuyuki Kida ◽  
Yasuhiro Odake ◽  
Tatsuo Sakai

In order to examine the period of fine granular area (FGA) formation of bearing steel in very high cycle fatigue regime, rotating bending fatigue tests were carried out at the stress amplitude 1100 MPa below the fatigue limit. The tests were interrupted at the cumulative damage values ranging from 0.1 to 0.5 with an increment of 0.1 to charge hydrogen to the specimens. After the charge, the rotating bending tests were continuously carried out. The crack origin areas on all fracture surfaces were checked by a scanning electron microscope (SEM), and it was discovered that FGA was not formed in some of them. From a view point of fracture mechanics, the stress intensity factor ranges of FGA areas, ΔKFGA, were calculated by using Murakamis area model. The ΔKFGA values increase with the increase of the cumulative damage values. Furthermore, ΔKFGA values in this study were smaller than 5 MPam which was obtained from usual fatigue testing. Therefore, we conclude that the stable crack growth stage starts when the threshold stress intensity factor range decreases due to hydrogen embrittlement in the middle of formation of FGA.


2015 ◽  
Vol 770 ◽  
pp. 209-215
Author(s):  
Pavlo Maruschak ◽  
Andriy Sorochak ◽  
Sergey V. Panin

The paper presents the basic regularities of fatigue failure of the railway wheelset axle material – OsL steel (C - 0,40—0,48 %; Mn - 0,55—0,85 %; Si - 0,15—0,35 %; P < 0,04%; S < 0,045 %; Cr < 0,3 %; Ni < 0,3 %; Cu < 0,25 %). It was revealed that under loading stress ratio R = 0, fatigue crack growth is 2 ... 4 times lower than that at the asymmetry R = -1. In doing so, amplitude of stress intensity factor vary in the range of 20 – 35 MPa√m. The micromechanisms of fatigue crack growth are described and systematized, while physical-mechanical interpretations of the relief morphology at different stages of its growth are offered.


Author(s):  
SH Hasani Najafabadi ◽  
AA Lotfi Neyestanak ◽  
S Daneshmand

Ultrasonic very high cycle fatigue testing finds many advantages in fatigue studies especially in very low fatigue crack growth rate investigations. In this application, the determination of the stress intensity factor has a key role and presenting a general approach to calculate stress intensity factor in reasonable time and ultimate accuracy is necessary. The present research proposes a new numerical approach (hybrid method) based on reduce order modeling (dynamic substructuring), multi-harmonic balance method, and M-integral to evaluate stress intensity factors under very high cycle fatigue testing in the most accurate and fast way possible. The verification of the hybrid method was done through a benchmark and implicit solver implemented in ABAQUS commercial software as the reference solution. Investigations proved that the presented hybrid method here could determine stress intensity factor in ultrasonic regime with the ultimate accuracy and save computational time at least 50%.


2021 ◽  
Vol 87 (12) ◽  
pp. 55-62
Author(s):  
S. A. Naprienko ◽  
A. A. Levchenko ◽  
V. V. Avtaev

The reasons for the destruction of the chassis main cross member made of alloy VT22 are considered and analyzed in bench test conditions. The chemical composition, mechanical properties, as well as macro- and microstructure of the material were studied. The tests of the cross-arm material for crack resistance and low-cycle fatigue (LCF) with the determination of the durability were carried out. The results of analysis proved that material meets the declared performance characteristics. A fractographic study of the traverse fracture showed that the fracture occurred from several foci according to the fatigue mechanism. The length of the longest fatigue crack was 1.7 mm and the critical stress intensity factor KIc was thus attained. Proceeding from the dimensions of the part at the site of fracture, the maximum crack length and the value of the critical stress intensity factor obtained experimentally KIc = 56.5 MPa • m1/2, we have calculated the nominal tensile stress at the moment of fracture. The calculated value of the nominal stresses is 1022 MPa, which is comparable to the yield strength of the material (1100 MPa). A high level of tensile stresses in the loading cycle is considered the most probable reason for the destruction of the chassis main cross member in the conditions of bench tests.


2018 ◽  
Vol 12 (1) ◽  
pp. 38-43
Author(s):  
Janusz Lewandowski ◽  
Dariusz Rozumek

AbstractThe article presents the maps of xx stress component and compares values of analytical and numerical calculations for the stress intensity factor range of welded specimens with fillet welds which subjected to cyclic bending. The tests were performed under constant value of moment amplitude Ma= 9.20 N·m and stress ratio R = σmin/ σmax= −1. The specimens were made of drag steel rod S355. The specimens were solid and welded. The numerical models were simulated with ABAQUS suite and numerical calculations performed with FRANC3D software.


Sign in / Sign up

Export Citation Format

Share Document