scholarly journals Influence of the stacking sequence and crack velocity on fracture toughness of woven composite laminates in mode I

2014 ◽  
Vol 131 ◽  
pp. 340-348 ◽  
Author(s):  
P. Navarro ◽  
J. Aubry ◽  
F. Pascal ◽  
S. Marguet ◽  
J.F. Ferrero ◽  
...  
2015 ◽  
Vol 24 (1) ◽  
pp. 096369351502400
Author(s):  
P. Navarro ◽  
J. Aubry ◽  
F. Pascal ◽  
S. Marguet ◽  
J.F. Ferrero ◽  
...  

Woven composites are well-known for their good transverse properties and for their high fracture toughness. The damage mechanisms leading to delamination in woven composites are identified in mode I and II and are compared with those occurring in unidirectional laminates. The influence of several parameters, including the draping sequence and the fibre / matrix interface on the fracture toughness of woven composite laminates is studied. Pure Mode I and Mode II tests are carried out on several carbon/epoxy and glass/epoxy woven composites configurations and the differences observed are discussed from a fractographic point of view. The study illustrates the high fracture toughness of the composites made of woven fabrics as well the influence of the orientation of the plies, the nature of the fibres and the addition of an adhesive film.


2020 ◽  
pp. 002199832095078
Author(s):  
Julio A Rodríguez-González ◽  
Carlos Rubio-González

In this work, the effect of seawater ageing on mode I and mode II interlaminar fracture toughness ([Formula: see text] and [Formula: see text]) of prepreg-based woven glass fiber/epoxy laminates with and without multiwall carbon nanotubes (MWCNTs) has been investigated. The first part of the investigation reports the moisture absorption behavior of multiscale composite laminates exposed to seawater ageing for ∼3912 h at 70 °C. Then, the results of mode I and mode II fracture tests are presented and a comparison of [Formula: see text] and [Formula: see text] for each type of material group and condition is made. Experimental results showed the significant effect of seawater ageing on [Formula: see text] of multiscale composite laminates due to matrix plasticization and fiber bridging. The improvement in [Formula: see text] of the wet glass fiber/epoxy laminate was about 50% higher than that of the neat laminate (without MWCNTs) under dry condition. It was also found that the presence of MWCNTs into composite laminates promotes a moderate increase (8%) in their [Formula: see text] as a result of the additional toughening mechanisms induced by CNTs during the delamination process. Scanning electron microscopy analysis conducted on fracture surface of specimens reveals the transition from brittle (smooth surface) to ductile (rough surface) in the morphology of composite laminates due to the influence of seawater ageing on the polymeric matrix and fiber/matrix interface.


2001 ◽  
Vol 3 (7) ◽  
pp. 492-496 ◽  
Author(s):  
P. S. Uskokovic ◽  
I. Balac ◽  
L. Brajovic ◽  
M. Simic ◽  
S. Putic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document