Phase-field simulation of interactive mixed-mode fracture tests on cement mortar with full-field displacement boundary conditions

2017 ◽  
Vol 182 ◽  
pp. 658-688 ◽  
Author(s):  
T. Wu ◽  
A. Carpiuc-Prisacari ◽  
M. Poncelet ◽  
L. De Lorenzis
Author(s):  
Meng Fan ◽  
Yan Jin ◽  
Thomas Wick

AbstractIn this work, we develop a mixed-mode phase-field fracture model employing a parallel-adaptive quasi-monolithic framework. In nature, failure of rocks and rock-like materials is usually accompanied by the propagation of mixed-mode fractures. To address this aspect, some recent studies have incorporated mixed-mode fracture propagation criteria to classical phase-field fracture models, and new energy splitting methods were proposed to split the total crack driving energy into mode-I and mode-II parts. As extension in this work, a splitting method for masonry-like materials is modified and incorporated into the mixed-mode phase-field fracture model. A robust, accurate and efficient parallel-adaptive quasi-monolithic framework serves as basis for the implementation of our new model. Three numerical tests are carried out, and the results of the new model are compared to those of existing models, demonstrating the numerical robustness and physical soundness of the new model. In total, six models are computationally analyzed and compared.


1989 ◽  
pp. 117-130 ◽  
Author(s):  
H. W. Reinhardt ◽  
H. A. W. Cornelissen ◽  
D. A. Hordijk

2013 ◽  
Vol 392 ◽  
pp. 105-109
Author(s):  
Mahmood Mokhtari Hasan Abad ◽  
Reza Bakhtiari ◽  
Naghdali Choupani

The study focuses on using fracture mechanics to evaluate mixed-mode fracture properties of adhesively bonded aerospace material systems. As a part of experimental efforts, mixed-mode fracture tests were performed using modified Arcan specimens consisting of several combinations of adhesive, composite and metallic adherends using a special loading device. Experimental and numerical studies of mixed-mode fracture behaviour of adhesively bonded aluminum and steel were also performed using an adhesive in the aerospace industry. Finite element analyses were carried out on specimens with different adherends. Based on those analyses, many fundamental numerical results were obtained.


2013 ◽  
Vol 577-578 ◽  
pp. 117-120 ◽  
Author(s):  
Radu Negru ◽  
Liviu Marşavina ◽  
Hannelore Filipescu

Using the asymmetric semi-circular bend specimen (ASCB) a set of mixed-mode fracture tests were carried out in the full range from pure mode I to pure mode II. The tests were conducted on two polyurethane materials characterized by different properties. The fracture parameters were obtained from experiments and are compared with the predictions based on the generalized MTS criterion (GMTS). The agreement between the experimental results and those predicted based on the GMTS criterion is discussed finally.


2005 ◽  
Vol 475-479 ◽  
pp. 1329-1332
Author(s):  
Masayuki Tsukada ◽  
Eiichi Sato ◽  
Kazuhiko Kuribayashi

Fracture behavior under multiaxial stress state of polycrystalline alumina was studied from the view point of an artificial crack propagation and fracture from a natural flaw. The former was studied by mixed-mode fracture toughness tests; asymmetric four-point bending and diametral compression techniques were carried out using precracked and notched specimens. The latter was studied by biaxial fracture tests in compression and torsion loading; multiaxial fracture statistics was applied to the measured fracture envelope. The ratio KIIC/KIC obtained from the biaxial tests was higher than that obtained by the mixed-mode fracture toughness tests. It revealed that the fracture from an artificial flaw does not simulate the fracture from a naturall flaw in polycrystalline ceramics.


Sign in / Sign up

Export Citation Format

Share Document