Specific energy analysis of rock cutting based on fracture mechanics: A case study using a conical pick on sandstone

2019 ◽  
Vol 213 ◽  
pp. 197-205 ◽  
Author(s):  
Xiang Wang ◽  
Okan Su
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

To predict fragment separation during rock cutting, previous studies on rock cutting interactions using simulation approaches, experimental tests, and theoretical methods were considered in detail. This study used the numerical code LS-DYNA (3D) to numerically simulate fragment separation. In the simulations, a damage material model and erosion criteria were used for the base rock, and the conical pick was designated a rigid material. The conical pick moved at varying linear speeds to cut the fixed base rock. For a given linear speed of the conical pick, numerical studies were performed for various cutting depths and mechanical properties of rock. The numerical simulation results demonstrated that the cutting forces and sizes of the separated fragments increased significantly with increasing cutting depth, compressive strength, and elastic modulus of the base rock. A strong linear relationship was observed between the mean peak cutting forces obtained from the numerical, theoretical, and experimental studies with correlation coefficients of 0.698, 0.8111, 0.868, and 0.768. The simulation results also showed an exponential relationship between the specific energy and cutting depth and a linear relationship between the specific energy and compressive strength. Overall, LS-DYNA (3D) is effective and reliable for predicting the cutting performance of a conical pick.


2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

In order to overcome conical pick wear in the traditional rock cutting method, a new cutting method was proposed on account of increasing free surface of the rock. The mechanical model of rock plate bending under concentrated force was established, and the first fracture position was given. The comparison between experimental and numerical results indicated that the numerical method is effective. A computer code LS-DYNA (3D) was employed to study the cutting performance of a conical pick. To study the rock size influenced on the cutting performance, the numerical simulations with different thickness, width, and height of a rock plate was carried out. The numerical simulation with the different cutting parameters of cutting speed, cutting angle, and cutting position influenced on cutting performance was also carried out. The numerical results indicated that the peak force increased with the increasing thickness of rock plate. With the increasing width and height of the rock plate, the peak force decreased and then became stable. Besides, the peak force decreased with the increasing of cutting position lxp/lx. Moreover, the peak force increased and then decreased with the increasing of cutting angle. The cutting speed has nonsignificant influence on the peak force. The strong exponential relationship was obtained between the peak force and cutting position, thickness, height, and width of the rock plate at a confidence level of 0.95. A binomial relationship was observed between the peak force and cutting angel. The cutting force comparison between traditional rock cutting and rock plate cutting indicated that the new cutting method can effectively reduce peak cutting force.


2000 ◽  
Vol 28 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Roger Fay ◽  
Graham Treloar ◽  
Usha Iyer-Raniga

Energy Policy ◽  
2004 ◽  
Vol 32 (2) ◽  
pp. 281-287 ◽  
Author(s):  
Jyotirmay Mathur ◽  
Narendra Kumar Bansal ◽  
Hermann-Joseph Wagner

2018 ◽  
Vol 48 (1) ◽  
pp. 43-49
Author(s):  
E. A. PRESEZNIAK ◽  
J. E. PEREZ IPIÑA ◽  
C. A. BAVASTRI

Damage prognosis uses numerical and experimental responses to identify damage in structures or part of them, thus allowing the remaining structural life estimation at a high level of precision. Current methods focalize on crack identification; however, a complete methodology to estimate the remaining life of a cracked structure is less developed. A methodology is presented in this paper drawing on concepts such as wavelets transform, dynamic structures, and vibration signals for crack identification; and fracture mechanics and nonlinear optimization to obtain the remaining life. Finite element theory was applied to obtain its vibration modes. The crack was modeled as a flexural spring connected to the elements in the crack position and the crack identification was performed in the wavelet domain. Nonlinear optimization techniques and fracture mechanics concepts were used to estimate the remaining fatigue life. A numerical-experimental case study is solved to show the fundamentals of this methodology.


2021 ◽  
Vol 239 ◽  
pp. 109923
Author(s):  
Yibo Liang ◽  
Yu Ma ◽  
Haibin Wang ◽  
Ana Mesbahi ◽  
Byongug Jeong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document