cutting depth
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 111)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 3 (1) ◽  
pp. 11-19
Author(s):  
Andrzej Perec ◽  

This paper introduces optimization of machining parameters for high-pressure abrasive water jet cutting of Hardox 500 steel utilizing desirability function analysis (DFA). The tests were carried out according to the orthogonal matrix (Taguchi) L9. The control parameters of the process such as pressure, abrasive flow rate, and traverse speed was optimized under multi-response conditions namely cutting depth and surface roughness. The optimal set of control parameters was established on the basis of the composite desirability value obtained from desirability function analysis and the significance of these parameters was determined by analysis of variance (ANOVA). The effects show that optimal sets for high cutting depth and small surface roughness is high pressure, middle abrasive flow rate, and small traverse speed. A confirmation test was also leaded to validate the test results. Results of the research have shown that machining efficiency at keeping good level quality of cut surface can be improved this approach.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yong Wang ◽  
Hongjian Ni ◽  
Ruihe Wang ◽  
Bin Huang ◽  
Shubin Liu ◽  
...  

Extensive studies have been carried out on cutting rock with a PDC cutter, but cutting rock assisted by impact force is rarely studied. In this paper, cutting rock using conical and cylindrical PDC cutters assisted by impact force were researched with the explicit dynamic model. The laws of cutting rock using a cylindrical cutter assisted by impact force are the same as those of a conical cutter. There are thresholds of impact frequency and amplitude when they are single variables. When impact frequency is lower than the threshold frequency, the impact frequency is the dominant frequency in the frequency spectrum of weight on bit (WOB), and the amplitude of dominant frequency and removal volume decreases with the increase of impact frequency. When the impact frequency is higher than the threshold frequency, there is no dominant frequency in the frequency spectrum of WOB, and the removal volume behaves the same. When the impact force is lower than the threshold amplitude, there is no dominant frequency in the frequency spectrum of WOB, and it does not affect the removal volume but the removal volume is positively correlated with the impact amplitude. When the impact amplitude is higher than the threshold amplitude, the removal volume is also positively correlated with the impact amplitude, and the removal volume assisted by low-frequency (20 Hz and 40 Hz) impact force is higher. The frequency threshold and amplitude threshold of the conical cutter are smaller than those of the cylindrical cutter. Although the cutting depth and removal volume of the conical cutter are lower than those of the cylindrical cutter, the amplifications of cutting depth and removal volume of the conical cutter are higher than those of the cylindrical cutter when assisted by impact force.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012011
Author(s):  
A N Amir ◽  
H Ghazali ◽  
H Wang ◽  
L Ye ◽  
N A Fadi ◽  
...  

Abstract A unidirectional carbon fibre reinforced polymer (CFRP) laminate is a composite material made up of strong parallel carbon fibres incorporated in a polymer matrix such as epoxy to provide high stiffness and strength in the fibre direction of the laminate. Unfortunately, the interlaminar or intralaminar plane of this material has a low resistance to damages as the fracture toughness of a unidirectional CFRP laminate is related to the energy dissipation during the orthogonal cutting. The aim of this study is on cutting a unidirectional CFRP along the longitudinal or transverse directions, characterizing orthogonal cutting forces and the related fracture energy. Orthogonal cutting is performed using braised carbide tools for a range of cutting depth of 10-100 ³m with a rake angle of 30° to quantify the cutting forces and to observe the fracture mechanisms. The fibre orientations have a significant impact on surface bouncing-back. For some fibre orientations, the energy balance model is applicable, deducting the reasonable value of fracture toughness due to high normal force (F t). Fibre subsurface damage and cutting forces during cutting are found to be strongly influenced by the cutting depth. The input energy of cutting is released in form of new surface energy, fibre breakage, high bending energy, and chip fracture energy.


2021 ◽  
Author(s):  
Tao Zhu ◽  
Ming Cai ◽  
Yadong Gong ◽  
Xingjun Gao ◽  
Ning Yu ◽  
...  

Abstract Based on the variation of the actual cutting depth during the grinding process, a 3D finite element (FE) simulation model for grinding nickel-based superalloy GH4169 with single abrasive was initially constructed. Then the morphological evolution of the grinding chips during the grinding process was studied. In addition, the effect of the single abrasive cutting depth and the grinding speed on chip morphology and segmentation frequency was investigated. Finally, experimental results with the same test parameters verify the finite element simulation results. The results showed that in the experimental grinding speed range, the sawtooth lamellar chip with the free surface being serrated and the contact surface being smooth due to the extrusion of the abrasive is easy to produce when grinding nickel-based superalloy GH4169. As the grinding speed increases, the chip morphology changes from a unitary lamellar chip to a continuous serrated chip, developing into a continuous ribbon chip. The chip segmentation frequency is mainly determined by grinding depth and grinding speed. To be specific, the smaller the grinding depth and the greater the grinding speed, the greater the chip formation frequency.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 208
Author(s):  
Xuefeng Yan ◽  
Shuliang Dong ◽  
Xianzhun Li ◽  
Zhonglin Zhao ◽  
Shuling Dong ◽  
...  

Zirconia ceramics are widely used in many fields because of their excellent physical and mechanical properties. However, there are some challenges to machine zirconia ceramics with high processing efficiency. In order to optimize parameters for milling zirconia ceramics by polycrystalline diamond tool, finite element method was used to simulate machining process based on Johnson-Cook constitutive model. The effects of spindle speed, feed rate, radial and axial cutting depth on cutting force, tool flank wear and material removal rate were investigated. The results of the simulation experiment were analyzed and optimized by the response surface method. The optimal parameter combination was obtained when the spindle speed, feed rate, radial and axial cutting depth were 8000 r/min, 90.65 mm/min, 0.10 mm and 1.37 mm, respectively. Under these conditions, the cutting force was 234.81 N, the tool flank wear was 33.40 μm when the milling length was 60 mm and the material removal rate was 44.65 mm3/min.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7861
Author(s):  
Yali Zhang ◽  
Mingyang Wu ◽  
Keke Liu ◽  
Jianyu Zhang

The nickel-based superalloy is widely used in aerospace. It is a typical difficult-to-cut material with poor plasticity. During the cutting process, the fluctuation of the cutting force caused by the change of cutting conditions can aggravate tool vibration, thereby reducing the surface quality of the machined workpiece. However, the emergence of high-pressure cooling technology provides technical support for overcoming the difficulty in superalloy processing. Therefore, it is of great significance to optimize the tool vibration and surface roughness of cutting GH4169 under high-pressure cooling. Taking GH4169 as the research object, the single-factor and orthogonal high-pressure cooling cutting experiments were conducted firstly in this paper. Then, the methods of the main effect diagram and response surface were applied to analyze the impact of cutting speed, feed rate, cutting depth, and cooling pressure on the three-way tool vibration. Next, MATLAB was adopted to draw the frequency spectrum of radial tool vibration at different cutting speeds, and the relationship between chip morphology, tool vibration, and workpiece surface roughness at different cutting speeds was discussed. Based on this, a mathematical model of radial tool cutting vibration and surface roughness related to the cutting amount and cooling pressure was established. Support vector machine (SVM) was applied to make predictions. Meanwhile, the non-dominated sorting genetic algorithm with an elitist strategy was adopted for multi-objective optimization, and the optimization results were verified through experiments. The results indicated that the feed rate and cutting depth had a great impact on the tool vibration and surface roughness. The established mathematical model was accurate and effective for optimizing the cutting parameters. These results are of great significance to improve the cutting stability and the quality of machined surface.


2021 ◽  
Vol 8 ◽  
Author(s):  
Holger Wurm ◽  
Patrick Johannes Schuler ◽  
Florian Hausladen ◽  
René Graesslin ◽  
Thomas Karl Hoffmann ◽  
...  

Objectives: A sufficient histological evaluation is a key pillar in oncological treatment, especially in situations of cancer of unknown primary. CO2 laser technology is used in clinical routine of soft tissue surgery because of its cutting quality and availability. Diode pumped solid state Er(bium):YAG laser systems promise a higher cutting efficiency and minor thermal damages. The aim of this study was to compare both laser systems with respect to their suitability for cutting soft tissue.Methods: A setup was realized which enables comparable experiments with the clinical CO2 laser (AcuPulse 40ST DUO, Lumenis) and the Er:YAG laser system (DPM 40, Pantec Biosolutions AG). Fresh mucosal samples of porcine tongues were used to determine the influence of laser power and sample velocity on cutting depth and thermal damage width for both lasers. In addition, for the Er:YAG laser, the influence of the pulse repetition rate was examined additionally. For analysis, images of histological sections were taken.Results: In all experiments, the Er:YAG laser shows a significantly higher cutting depth (P < 0.0001) and less thermal damage width (P < 0.0001) than the CO2 laser. For example, at an average power of 7.7 W and a sample velocity of 5 mm/s the Er:YAG laser shows a mean cutting depth of 1.1 mm compared to the CO2 laser with 500 μm. While the Er:YAG laser shows a mean thermal damage width of 70 μm compared to 120 μm. Furthermore, the Er:YAG enables the adjustment of the cutting depth and thermal damage width by varying the irradiation parameters. A decrease of the repetition rate leads to a reduction of thermal damage. For example, a repetition rate of 100 Hz results in a thermal damage width of 46 μm compared to 87 μm at 800 Hz at an average power of 7.7 W and a cutting velocity = 5 mm/s while a homogenous cutting quality can be achieved.Conclusions: In conclusion, the results of these ex vivo experiments demonstrate significant advantages of the diode pumped Er:YAG laser system for soft tissue ablation compared to the CO2 laser, in particular regarding cutting efficiency and thermal damage width.


2021 ◽  
Vol 23 (4) ◽  
pp. 47-64
Author(s):  
Atul Kulkarni ◽  
◽  
Satish Chinchanikar ◽  
Vikas Sargade ◽  
◽  
...  

Introduction. During machining, the resulting temperature has a wider and more critical impact on machining performance. During machining, the power consumption is mainly converted into heat near the cutting edge of the tool. Almost all the work performed during plastic deformation turns into heat. Researchers have put a lot of effort into measuring the cutting temperature during machining, as it significantly affects tool life and overall machining performance. The purpose of the work: to investigate the temperature of the chip-tool interface, taking into account the influence of cutting parameters and the type of tool coating during SS304 turning. The chip-tool interface temperature is measured by changing the cutting speed and feed with a constant cutting depth for uncoated and PVD single-layer TiAlN and multi-layer TiN/TiAlN coated carbide tools. In addition, an attempt is made to develop a model for predicting the temperature of the chip-tool interface using dimensional analysis and ANN simulating to better understand the process. The methods of investigation. Experiments are carried out with varying the cutting speed (140-260 m/min), feed (0.08-0.2 mm/rev) and a constant cutting depth of 1 mm. The chip-tool interface temperature is measured using the tool-work thermocouple principle. The Calibration Setup is designed to establish the relationship between the produced electromotive force (EMF) and the cutting temperature during machining. Statistical dimensional analysis and artificial neural network models have been developed to predict the temperature of the chip-tool interface. Tangential cutting force and chip attributes such as chip width and thickness are also measured depending on the cutting conditions, which is a prerequisite for dimensional analysis simulation. Results and Discussion. A tool made of TiAlN carbide with PVD coating had a lower temperature at the chip-tool interface than a tool with TiN/TiAlN coating. It has been observed that the chip-tool interface temperature increases prominently with the cutting speed, followed by the chip cross-sectional area and the specific cutting pressure. However, a lower cutting force was observed when using a carbide tool with a multi-layer TiN/TiAlN coating, which can be attributed to a lower coefficient of friction created by the front surface of this tool for flowing chips. On the other hand, the greatest cutting force was observed in uncoated carbide tools. It was noticed that the developed models allow predicting the temperature of the chip-tool interface with an absolute error of 5%. However, the lowest average absolute error of 0.78% was observed with the ANN model and, therefore, can be reliably used to predict the chip-tool interface temperature during SS304 turning.


2021 ◽  
Vol 127 (23) ◽  
Author(s):  
Ramin Aghababaei ◽  
Mohammad Malekan ◽  
Michal Budzik

Sign in / Sign up

Export Citation Format

Share Document