scholarly journals Numerical Simulation of Rock Plate Cutting with Three Sides Fixed and One Side Free

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

In order to overcome conical pick wear in the traditional rock cutting method, a new cutting method was proposed on account of increasing free surface of the rock. The mechanical model of rock plate bending under concentrated force was established, and the first fracture position was given. The comparison between experimental and numerical results indicated that the numerical method is effective. A computer code LS-DYNA (3D) was employed to study the cutting performance of a conical pick. To study the rock size influenced on the cutting performance, the numerical simulations with different thickness, width, and height of a rock plate was carried out. The numerical simulation with the different cutting parameters of cutting speed, cutting angle, and cutting position influenced on cutting performance was also carried out. The numerical results indicated that the peak force increased with the increasing thickness of rock plate. With the increasing width and height of the rock plate, the peak force decreased and then became stable. Besides, the peak force decreased with the increasing of cutting position lxp/lx. Moreover, the peak force increased and then decreased with the increasing of cutting angle. The cutting speed has nonsignificant influence on the peak force. The strong exponential relationship was obtained between the peak force and cutting position, thickness, height, and width of the rock plate at a confidence level of 0.95. A binomial relationship was observed between the peak force and cutting angel. The cutting force comparison between traditional rock cutting and rock plate cutting indicated that the new cutting method can effectively reduce peak cutting force.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Zhenguo Lu ◽  
Qingliang Zeng ◽  
Zhiwen Wang ◽  
Xu Li ◽  
Kuidong Gao

In the rock cutting process, conical pick wear is often encountered. In order to restrain this condition, a saw blades and conical pick combined cutting method was put forward. Saw blades were employed to slit the rock for increasing the free surface, and then the conical pick was used to break the rock. To research the cutting performance of the new cutting method, the corresponding experimental device and a three-dimensional finite element model are established. In order to obtain crack propagation and fragment separation and to study the fracture process of the rock plate, a damage constative model and failure mechanism were combined in the numerical model. The mechanical tests were carried out to achieve the mechanical parameters of the rock. To investigate different parameters affecting rock plate cutting performance, experiments with different compressive strengths, physical parameters, and cutting depths were carried out. Moreover, the confining pressures affecting the cutting performance were adopted to simulate deep mining conditions. The experimental results demonstrated that the peak cutting force shows the exponential positive correlation with compressive strength, thickness of the rock plate, and cutting depth of the conical pick, and exhibits the exponential positive correlation with rock plate height and width. Besides, the numerical simulation results show that peak cutting force and confining pressure have a binomial relationship.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Zhiwen Wang ◽  
Qingliang Zeng ◽  
Zhenguo Lu ◽  
Lirong Wan ◽  
Xin Zhang ◽  
...  

The new method of rock breaking based on the combination of circular sawblade and conical pick was proposed to improve the effectiveness of hard rock breaking. The numerical simulation method was applied to research the conical pick cutting arc rock plate by ANSYS/LS-DYNA. The conical pick cutting arc rock plate numerical simulation model was established to research the influence of arc rock plate structural parameters and cutting parameters on cracks formation and propagation of the arc rock plate and the cutting force in the process of conical pick cutting arc rock plate. The amount of cracks is positively correlated with arc rock plate thickness, the cutting speed, and distance of cutting point to arc rock plate central axis and negatively correlated with the cutting angle. The mean peak cutting force is positively correlated with the thickness of arc rock plate and the distance of cutting point to arc rock plate central axis; however, it is negatively correlated with the arc rock plate height and width and cutting angle of conical pick. The simulation results can be used to predict the conical pick work performance with various cutting parameters and structural parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhenguo Lu ◽  
Qingliang Zeng ◽  
Zhaosheng Meng ◽  
Zhiwen Wang ◽  
Guanshun Gao

Conical pick is a rock cutting tool that is commonly used in roadway driving. Pick wear frequently happens in the course of breaking hard rock. The current paper shows a new method to solve the problem of pick wear. The rock is preslit with the saw blade and then broken by the conical pick. In order to study the cutting force and features of rock fragment, the numerical model is built between rock plate and conical pick. And element erosion is added in the code to obtain the fracture result. The rock plate cutting testbed is made to testify the correctness of numerical simulation. The width, height, and thickness of the rock plate, as well as cutting angle and cutting position, which influence cutting force and rock fracture are studied. According to the results, there exist exponential relationships between cutting force and width and thickness of rock plate. In addition, a linear relationship is found between the cutting force and the height of rock plate. Furthermore, both the cutting angle and cutting depth have an influence on cutting force. In particular, the factors of thickness and height or rock plate have the most obvious influence on cutting force. It is proven that what is beneficial to rock fracture is higher height and lower thickness of rock plate.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.


2019 ◽  
Vol 6 (5) ◽  
pp. 190116 ◽  
Author(s):  
Si-fei Liu ◽  
Shuai-feng Lu ◽  
Zhi-jun Wan ◽  
Jing-yi Cheng

Rock damage is one of the key factors in the design and model choice of mining machinery. In this paper, the influence of rock damage on rock fragmentation and cutting performance was studied using PFC 2D . In PFC 2D software, it is feasible to get rock models with different damage factors by reducing the effective modulus, tensile and shear strength of bond by using the proportional factors. A linear relationship was obtained between the proportion factor and damage factor. Furthermore, numerical simulations of rock cutting with different damage factors were carried out. The results show that with the increase of damage factor, the rock cutting failure mode changes from tensile failure to brittle failure, accompanied by the propagation of macro cracks, the formation of large debris and a notable decrease in the peak cutting force. The mean cutting force is negatively correlated with the damage factor. Besides this, the instability of cutting force was evaluated by the fluctuation index and the pulse number of unit displacement. It was found that the cutting force was quite stable when the damage factor was 0.3, which improves the reliability of cutting machines. Finally, the cutting energy consumption of rock cutting with different damage factors was analysed. The results reveal that an increase of damage factor can raise the rock cutting efficiency. The aforementioned findings play a significant role in the development of assisted rock-breaking technologies and the design of cutting head layout of mining machinery.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qingliang Zeng ◽  
Zhiwen Wang ◽  
Zhenguo Lu ◽  
Lirong Wan ◽  
Xin Zhang

The diamond sawblade has been widely used in the field of rock mining and processing. This article, through the establishment of a numerical simulation model of diamond sawblade cutting rock, studies the influence of the distance between the diamond sawblade and free surface on cutting performance. In the process of diamond sawblade cutting rock, with the increase of the distance from the sawblade to the free surface, the average cutting force, normal force, and tangential force of the sawblade increase at first and then stabilize, and the axial force gradually decreases and tends to be stable. In the process of cutting rock with fixed depth, cutting force and rock damage are positively related to feed speed and cutting depth of the diamond sawblade. Through the statistical analysis of rock damage by image recognition program statistics, it is concluded that the feed speed and cutting depth of the sawblade have a significant impact on the rock damage value. When the distance increases to 12 mm, there is a relatively complete rock plate between the sawblade and free surface. The rock free surface damage disappears when distance reaches 16 mm. The research results provide a theoretical basis for the sawblade processing rock plate.


Author(s):  
Shuo Qiao ◽  
Jingyi Xia ◽  
Yimin Xia ◽  
Zaizheng Liu ◽  
Jinshu Liu ◽  
...  

One of the key points in numerical simulation of coal-rock cutting by conical picks is to select a proper coal-rock constitutive model. In order to find a reasonable coal-rock constitutive model, a uniaxial compression test was conducted to obtain the constitutive model. The several stages for linear elastic deformation and creep, plastic yielding, hardening, and finally brittle cracking of the constitutive units were studied, and the coal-rock constitutive model was established. As a result, the coal-rock cutting by one conical pick or two conical picks was simulated and the results were compared with coal-rock cutting experiment on a Coal-rock Cutting Machine. According to the simulation and experimental results, it is believed that the numerical simulation can reveal coal-rock crushing process. And the total error rate of coal-rock cutting by one conical pick between the simulation and experiment is 8.5%. The maximum deviation of coal-rock cutting by two conical picks between the simulation and experiment is 9.8%. All simulation values are within a reasonable range. The comparison indicates that the coal-rock constitutive model should better be defined considering the coal-rock crushing process by conical picks.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

To predict fragment separation during rock cutting, previous studies on rock cutting interactions using simulation approaches, experimental tests, and theoretical methods were considered in detail. This study used the numerical code LS-DYNA (3D) to numerically simulate fragment separation. In the simulations, a damage material model and erosion criteria were used for the base rock, and the conical pick was designated a rigid material. The conical pick moved at varying linear speeds to cut the fixed base rock. For a given linear speed of the conical pick, numerical studies were performed for various cutting depths and mechanical properties of rock. The numerical simulation results demonstrated that the cutting forces and sizes of the separated fragments increased significantly with increasing cutting depth, compressive strength, and elastic modulus of the base rock. A strong linear relationship was observed between the mean peak cutting forces obtained from the numerical, theoretical, and experimental studies with correlation coefficients of 0.698, 0.8111, 0.868, and 0.768. The simulation results also showed an exponential relationship between the specific energy and cutting depth and a linear relationship between the specific energy and compressive strength. Overall, LS-DYNA (3D) is effective and reliable for predicting the cutting performance of a conical pick.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 137 ◽  
Author(s):  
Kairui Zheng ◽  
Fazhan Yang ◽  
Na Zhang ◽  
Qingyu Liu ◽  
Fulin Jiang

Titanium alloys are widely used in various fields, but their machinability is poor because the chip would easily adhere to the tool surface during cutting, causing poor surface quality and tool wear. To improve the cutting performance of titanium alloy Ti-6Al-4V, experiments were conducted to investigate the effect of micro textured tool on the cutting performances. The cemented carbide tools whose rake faces were machined with line, rhombic, and sinusoidal groove textures with 10% area occupancy rates were adopted as the cutting tools. The effects of cutting depth and cutting speed on feed force and main cutting force were discussed based on experimental results. The results show that the cutting force produced by textured tools is less than that produced by non-textured tools. Under different cutting parameters, the best cutting performance can be obtained by using sinusoidal textured tools among the four types of tools. The wear of micro textured tools is significantly lower than that of non-textured tools, due to a continuous lubrication film between the chip and the rake face of the tool that can be produced because the micro texture can store and replenish lubricant. The surface roughness obtained using the textured tool is better than that using the non-textured tool. The surface roughness Ra can be reduced by 35.89% when using sinusoidal textured tools. This study is helpful for further improving the cutting performance of cemented carbide tools on titanium alloy and prolonging tool life.


2012 ◽  
Vol 580 ◽  
pp. 63-66 ◽  
Author(s):  
Bin Li ◽  
Hong Wang

Though titanium alloys are being increasingly sought in a wide variety of engineering and biomedical applications, their manufacturability, especially machining and grinding imposes lot of constraints. With the development of engineering technology, FEM can be used to simulate metal machining process and gain better understanding of material flow within dies, so as to optimize tooling to eliminate tears, laps and other forging defects. In this paper, numerical simulation was conducted by using FEM software on the whole cutting process for TC4 alloy mounting parts in an effort to investigate the metal flow behavior. The calculated cutting force increases approximately logarithmically with the cutting speed, as should be expected from the logarithmic rate dependence.


Sign in / Sign up

Export Citation Format

Share Document