Digital image correlation and acoustic emission for damage analysis during tensile loading of open-hole flax laminates

2020 ◽  
Vol 228 ◽  
pp. 106921
Author(s):  
Mohamed Habibi ◽  
Luc Laperrière
2019 ◽  
Vol 18 (5-6) ◽  
pp. 1686-1697 ◽  
Author(s):  
Wen-zheng Zhao ◽  
Wei Zhou

Understanding the damage and failure of carbon/glass epoxy hybrid woven composites under tensile loading based on acoustic emission signals is a challenging task in their practical uses. In this study, an approach based on fuzzy c-means algorithm is proposed to process the acoustic emission signals from tensile loading of composites monitored by combining acoustic emission technology and digital image correlation method. The results show that the acoustic emission signals from tensile loading can be divided into three clusters. The three clusters correspond to three kinds of damage modes including matrix cracking, fiber/matrix debonding, delamination, and fiber breakage. By comparing the acoustic characteristics of these classes, a correlation procedure between the clusters and the damage mechanisms observed is proposed. Meanwhile, it can be found that debonding and fiber break signals for glass fiber correspond to a lower frequency range than that for carbon fiber. Moreover, the method combining acoustic emission and digital image correlation can effectively monitor the damage process of the specimen both on the inside and outside, which can provide a reference for the health monitoring of composite structure.


2017 ◽  
Vol 868 ◽  
pp. 323-327 ◽  
Author(s):  
An Shi Tong ◽  
Li Yang Xie ◽  
Xin Bai ◽  
Ming Li ◽  
Wei Ying Meng

Notched fiber-mental laminates are susceptible to damage. Nowadays, damage detection mainly depends on visual inspection and C scan. But the two methods are limited to the technical skill of the inspectors, causing missed detection or even fault detection. This paper devotes to exploring the DIC monitoring technique to assess of the damage process taking place in notched (open hole) specimens under uniaxial tensile loading. Two-dimensional (2D) Digital Image Correlation (DIC) techniques are employed to obtain full-field surface strain measurements of GLARE3-3/2 and GLARE6-3/2 laminate with an open circular hole under tensile loading. Failure modes,damage initiation and progression of notched fiber-metal laminates are characterized and discussed.


Sign in / Sign up

Export Citation Format

Share Document