scholarly journals Classical and Multisymplectic Schemes for Linearized KdV Equation: Numerical Results and Dispersion Analysis

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 214
Author(s):  
Adebayo Abiodun Aderogba ◽  
Appanah Rao Appadu

We construct three finite difference methods to solve a linearized Korteweg–de-Vries (KdV) equation with advective and dispersive terms and specified initial and boundary conditions. Two numerical experiments are considered; case 1 is when the coefficient of advection is greater than the coefficient of dispersion, while case 2 is when the coefficient of dispersion is greater than the coefficient of advection. The three finite difference methods constructed include classical, multisymplectic and a modified explicit scheme. We obtain the stability region and study the consistency and dispersion properties of the various finite difference methods for the two cases. This is one of the rare papers that analyse dispersive properties of methods for dispersive partial differential equations. The performance of the schemes are gauged over short and long propagation times. Absolute and relative errors are computed at a given time at the spatial nodes used.

Author(s):  
Olufemi Bosede ◽  
Ashiribo Wusu ◽  
Moses Akanbi

Mathematical modeling of scientific and engineering processes often yield Boundary Value Problems (BVPs). One of the broad categories of numerical methods for solving BVPs is the finite difference methods, in which the differential equation is replaced by a set of difference equations which are solved by direct or iterative methods. In this paper, we use some properties of matrices to analyze the stability and convergence of the prominent finite difference methods - two-step Obrechkoff method - for solving the boundary value problem $u^{\prime \prime} = f(t,u)$, $a < x < b$, $u(a) = \eta_1$, $u(b) = \eta_2$. Conditions for the stability and convergence of the two-step Obrechkoff method method were established.


2005 ◽  
Vol 15 (10) ◽  
pp. 1533-1551 ◽  
Author(s):  
FRANCO BREZZI ◽  
KONSTANTIN LIPNIKOV ◽  
VALERIA SIMONCINI

A family of inexpensive discretization schemes for diffusion problems on unstructured polygonal and polyhedral meshes is introduced. The material properties are described by a full tensor. The theoretical results are confirmed with numerical experiments.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


Sign in / Sign up

Export Citation Format

Share Document