Influence of the vehicle model on the prediction of the maximum bending response of simply-supported bridges under high-speed railway traffic

2014 ◽  
Vol 72 ◽  
pp. 123-139 ◽  
Author(s):  
A. Doménech ◽  
P. Museros ◽  
M.D. Martínez-Rodrigo
Author(s):  
Gonglian Dai ◽  
Meng Wang ◽  
Tianliang Zhao ◽  
Wenshuo Liu

<p>At present, Chinese high-speed railway operating mileage has exceeded 20 thousand km, and the proportion of the bridge is nearly 50%. Moreover, high-speed railway design speed is constantly improving. Therefore, controlling the deformation of the bridge structure strictly is particularly important to train speed-up as well as to ensure the smoothness of the line. This paper, based on the field test, shows the vertical and transverse absolute displacements of bridge structure by field collection. What’s more, resonance speed and dynamic coefficient of bridge were studied. The results show that: the horizontal and vertical stiffness of the bridge can meet the requirements of <b>Chinese “high-speed railway design specification” (HRDS)</b>, and the structure design can be optimized. However, the dynamic coefficient may be greater than the specification suggested value. And the simply supported beam with CRTSII ballastless track has second-order vertical resonance velocity 306km/h and third-order transverse resonance velocity 312km/h by test results, which are all coincide with the theoretical resonance velocity.</p>


2014 ◽  
Vol 505-506 ◽  
pp. 43-48
Author(s):  
Zhong Yang Lv ◽  
Kang Ning Zheng

In this paper, in order to improve the high speed railway sustainable competitive advantage as the research objective, systematic analysis of the high-speed railway to obtain sustainable competitive advantage evaluation index, including high-speed railway traffic function advantage, competitive advantage, advantage of positive externality, the Delphi method is used to scientific empowerment of these factors, by constructing fuzzy comprehensive evaluation model, the research conclusion is highway and air passenger is higher than that in high speed railway of competitive advantage


2011 ◽  
Vol 90-93 ◽  
pp. 958-963
Author(s):  
Xue Min Li ◽  
Er Yu Zhu ◽  
Yong Zheng Zhou ◽  
Yue Hong Qin

In the process of steam curing to high-speed railway’s simply-supported box girder, there are some problems must be faced such as the difficulty to determine steam curing system and to achieve automatic temperature control. With the construction site conditions of simple-supported box girder in Longwang beam field which is located on Shijiazhuang-Wuhan (Shi-Wu) section of Beijing-Guangzhou high-speed railway, the paper proposes the appropriate steam system for simply-supported box girders, determines the appropriate equipments, explores the temperature control system in the process of steam curing to the simply-supported box girder's concrete, and takes the temperature test of steam curing in the field. Results show that, the steam curing technology in this paper can increase the production efficiency of beam in production site, and effectively guarantee the prefabricated quality of simply-supported box girder.


2011 ◽  
Vol 128-129 ◽  
pp. 961-964
Author(s):  
Zhi Jian Qu ◽  
Li Liu

Railway signal is a key technology for high-speed railway,which is the foundation to keep the high-speed train line. Railway signal power is the automatic blocking of railway lines and 10kV lines transform into 380V power through after the power supply for railway signals. Signal power as the railway traffic signal of the power supply, it belongs to the first level of power system load. Its 10kV high voltage side stik up by the major of electric, 380V low voltage side maintenance by the signal major. When the signal power failure, often occur shirk responsibilities between the different majors, in order to define the responsibilities of the accident better, which need automation remote monitoring for main railway lines of the railway signal power and scheduling control as soon as possible[1-3].


2003 ◽  
Vol 87 (11) ◽  
pp. 57-63
Author(s):  
Maja Della Vedova ◽  
Luigi Evangelista ◽  
Francesco Sacchi

2012 ◽  
Vol 238 ◽  
pp. 733-737 ◽  
Author(s):  
Wang Fang ◽  
Bing Han ◽  
Shao Kun Yang

Creep will lead to increasing deflection of prestressed concrete girder, which may induce rails uneven, especially to ballastless tracks in high-speed railways. In this paper, two creep models, CEB-FIP90 and ACI209, were used in a finite element model to analyze influences of creep on simply supported prestressed concrete box girders which are used in high-speed railway in China. Sensitivity analysis was carried on towards curing age, secondary dead load, loading time and prestressing method on deformation of the girder. The results show creep should be controlled in engineering to ensure driving security.


2012 ◽  
Vol 178-181 ◽  
pp. 1125-1130
Author(s):  
Zhi Chen Wang ◽  
Ying Song ◽  
Ying Ming Shen

Traditional methods of wheel-rail contact forces measurement all need strain gauges on wheel sets or rails. The shortcomings of strain gauges such as zero-drift, poor anti-interference property and instability of test system can’t meat wheel/rail force test requirements in high-speed railways. A method based on PVDF piezoelectric sensing technology is presented for the test of wheel/rail contact force. Firstly, on the basis of the theory of vehicle-track coupling dynamics and by means of simulation software ADAMS/Rail, a three-dimensional train-track simulation model is established. Secondly, the modes and characteristics of wheel/rail impact vibrations due to non-roundness of railway wheels are investigated in high-speed railway operation. The relationship between the range for acceptable roundness values and vehicle speed is determined. Finally, the view that it is of important significance to establish wheel/rail force real-time monitoring system is expanded, so that abnormal conditions caused by out-of-round wheels can be detected in time, to ensure high-speed railway traffic safety. The study is very important for enhancing the stability and economy signification of rail transmission.


Sign in / Sign up

Export Citation Format

Share Document