steam curing
Recently Published Documents


TOTAL DOCUMENTS

287
(FIVE YEARS 76)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 3 ◽  
pp. 100042
Author(s):  
Abdullah M. Zeyad ◽  
Bassam A. Tayeh ◽  
Adeyemi Adesina ◽  
Afonso R.G. de Azevedo ◽  
Mohamed Amin ◽  
...  
Keyword(s):  

2022 ◽  
Vol 8 ◽  
Author(s):  
Changyong Li ◽  
Haibin Geng ◽  
Siyi Zhou ◽  
Manman Dai ◽  
Baoshan Sun ◽  
...  

Producing concrete with large content of fly ash attracts increasing attention in low carbon building materials. In this paper, the fly-ash concrete (FAC) with a content of fly ash no less than 50% total weight of binders was developed. The adaptability of fly ash used for concrete was firstly examined by testing the water requirement of normal consistency and the setting time for cement fly-ash paste, and the strengths of cement fly-ash mortar at the curing age of 7 and 28 days. The factors of water-to-binder ratio from 0.3 to 0.5, the content of fly-ash from 40% to 80%, and the excitation measures with additional Ca(OH)2 and steam curing at initial were considered. After that, the FAC was designed by adding an excessive content of fly ash to reduce the water-to-binder ratio from 0.50 to 0.26, and the content of fly-ash varied from 52% to 60%. Results show that the cement fly-ash paste presented a reduction of water requirement and an elongation of setting time with the increased content of fly ash. This provides a foundation of maintaining the workability of fresh FAC with a decreased water-to-binder ratio by adding the excessive content of fly ash. The cement fly-ash mortar had a lower early strength due to the slow reaction of fly-ash with Ca(OH)2, which could be improved by steam curing at the initial 24 h due to the excitation of fly-ash activity. At curing age of 28 days, the FAC had the expected axial compressive strength and modulus of elasticity, but the tensile strength was lower than predicted. At the curing age of 56 days, all the basic mechanical properties of FAC reached the prediction. The resistances of FAC to chloride ion penetration and carbonization were realized at a very high level as specified in codes.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7865
Author(s):  
Shuai Zhang ◽  
Bing Han ◽  
Huibing Xie ◽  
Mingzhe An ◽  
Shengxu Lyu

In order to shorten construction periods, concrete is often cured using steam and is loaded at an early age. This changes the performance and even the durability of the concrete compared to concrete that has been cured under normal conditions. Thus, the pattern and the mechanism of concrete performance change under different curing conditions, and loading ages are of great significance. The development of brittleness under different curing conditions and loading ages was studied. The evaluation methods that were used to determine concrete brittleness were expounded. Steam, standard, and natural curing conditions were carried out on single-side notched concrete beams as well as on a concrete prism and cubic blocks. The compressive strength and splitting tensile strength of the concrete blocks along with the fracture performance of the concrete beams were tested after 3, 7, 28, and 90 days. The steam curing condition significantly improved the strength of concrete before 28 days had passed, and the standard curing condition improved the strength of concrete after 28 days. Based on the experimental fracture parameters, a two-parameter fracture model was applied to study the development of fracture toughness KICS, critical crack tip opening displacement CTODc, and critical strain energy release rate GICS with hydration age under different curing conditions. With respect to long-term performance, the standard curing condition was better at resisting concrete crack propagations than the steam curing condition was. The characteristic length lch and the material length Q under the three curing conditions and the long-term development of brittleness in the concrete indicated that steam curing increased the concrete brittleness. Considering the effects of the curing condition and the loading age, a time-dependent concrete fracture toughness model was established, and the predicted value of the model was verified against the measured value. The results indicated that the model was able to accurately predict the fracture toughness with an error rate of less than 16%.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4409
Author(s):  
Kai Zhang ◽  
Wenrui Yang ◽  
Huiying Li ◽  
Zhiyi Tang ◽  
Weiwei Wu ◽  
...  

GFRP bars will be damaged due to a series of irreversible hygroscopic chemical reactions under humid and hot curing environmental conditions. The multiple factors related to the moisture absorption model were established through the moisture absorption test of GFRP bars embedded in steam-curing concrete, which considered different curing temperatures, different thicknesses of the protective layer, and different diameters of GFRP bars. Semi-reliability probability damage assessment of GFRP bars embedded in steam-curing concrete was described by introducing the reliability and stochastic theory. Subsequently, the tensile test of GFRP bars was carried out to verify the feasibility of the damage assessment. The results showed that the moisture absorption curves of GFRP bars were basically in line with Fick’s law. In addition, the influences of the curing temperature, the thickness of the protective layer, and the diameter on moisture absorption performance were presented. The semi-reliability probability damage assessment model of GFRP bars embedded in steam-curing concrete beams adequately considered the multiple factors related to moisture absorption and the uncertainty and randomness of the influencing factors during the process of moisture absorption.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7407
Author(s):  
Zhihan Yang ◽  
Youjun Xie ◽  
Jionghuang He ◽  
Fan Wang ◽  
Xiaohui Zeng ◽  
...  

Direct electric curing (EC) is a new green curing method for cement-based materials that improves the early mechanical properties via the uniform high temperature produced by Joule heating. To understand the effects of EC and steam curing (SC) on the mechanical properties and microstructure of cement-based materials, the mortar was cured at different temperature-controlled curing regimes (40 °C, 60 °C, and 80 °C). Meanwhile, the mechanical properties, hydrates and pore structures of the specimens were investigated. The energy consumption of the curing methods was compared. The results showed that the EC specimens had higher and more stable growth of mechanical strength. The hydration degree and products of EC samples were similar to that of SC samples. However, the pore structure of EC specimens was finer than that of SC specimens at different curing ages. Moreover, the energy consumption of EC was much lower than that of SC. This study provides an important technical support for the EC in the production of energy-saving and high early-strength concrete precast components.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7171
Author(s):  
Yueran Zhang ◽  
Heng Zhang ◽  
Xiong Zhang

In order to improve the early strength of fly ash blended cement concrete under steam curing conditions, fly ash was partly substituted by calcined flue gas desulfurization (FGD) gypsum and active calcium aluminate. The effect of the composition and curing condition on the workability, mechanical property, and volume stability was systematically evaluated. The variety of hydration products and the evolution was determined by XRD to explore the formation kinetic of ettringite. Results show that the addition of calcined FGD gypsum and active calcium aluminate is able to improve the early compressive strength but using more FGD gypsum and a high sulfur aluminum ratio leads to a reduction in compressive strength from 28 to 90 days due to the increment of ettringite and crystallization of dihydrate gypsum. Both the free expansion ratio and limited expansion exhibited a continuous increasement with time, especially in the first 14 days of testing. Cracks were not observed on the surface of samples immersed in water for a year. The improvement of strength and shrinkage resistance is mainly due to the formation of ettringite generated before 14 days and the precipitation was highly limited from 14 to 28 days. Moreover, the characteristic peak of gypsum appeared after 28 days, indicating the conversion of partial of calcined FGD gypsum. The work presented here provides a new solution for improving the early strength of fly ash concrete without reducing the later strength and consuming extra energy.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1455
Author(s):  
Lijuan Kong ◽  
Zirui Fan ◽  
Wenchen Ma ◽  
Jiatao Lu ◽  
Yazhou Liu

In this study, the strength development and microstructure evolution of alkali-activated fly ash (AAF), granulated blast furnace slag (AAG), and metakaolin (AAM) mortars under standard curing, steam curing, and oven curing conditions were investigated. The results show that 80 °C steam curing was more suitable for AAF mortar. Although oven curing was not as good as steam curing under the same temperature, the water evaporation increased the volume density of the N-A-S-H gel and refined the pore structure. For AAG mortar, the strength developed according to a Boltzmann function with time under steam curing conditions, which increased rapidly in the first 8 h, but grew little after about 15 h. Moreover, the strength development was severely limited by steam curing at 60 °C, and decreased under oven curing conditions due to the formation of microcracks that were induced by temperature stress and chemical shrinkage. For AAM mortar, the strength developed according to an Allometric power function with time under steam curing conditions, and the N-A-S-H gel formed in AAM had a higher polymerization degree and denser structure compared to that in AAF. The compressive strength of AAM mortar was 31.7 MPa after 80 °C steam curing for 4 h, and the standard curing time required to reach the same strength was less than 24 h, indicating that the standard curing was more suitable.


2021 ◽  
Vol 306 ◽  
pp. 124854
Author(s):  
Penggang Wang ◽  
Hua Fu ◽  
Tengfei Guo ◽  
Wenqiang Zuo ◽  
Haitao Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document