scholarly journals Soil-structure interaction effects in analysis of seismic fragility of bridges using an intensity-based ground motion selection procedure

2017 ◽  
Vol 151 ◽  
pp. 366-380 ◽  
Author(s):  
Sotiria P. Stefanidou ◽  
Anastasios G. Sextos ◽  
Anastasios N. Kotsoglou ◽  
Nikolaos Lesgidis ◽  
Andreas J. Kappos
Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Rabindra Adhikari ◽  
Rajesh Rupakhety ◽  
Prajwal Giri ◽  
Rewati Baruwal ◽  
Ramesh Subedi ◽  
...  

Most of the reinforced concrete buildings in Nepal are low-rise construction, as this type of construction is the most dominant structural form adopted to construct residential buildings in urban and semi-urban neighborhoods throughout the country. The low-rise residential constructions generally follow the guidelines recommended by the Nepal Building Code, especially the mandatory rules of thumb. Although low-rise buildings have brick infills and are randomly constructed, infill walls and soil–structure interaction effects are generally neglected in the design and assessment of such structures. To this end, bare frame models that are used to represent such structures are questionable, especially when seismic vulnerability analysis is concerned. To fulfil this gap, we performed seismic vulnerability analysis of low-rise residential RC buildings considering infill walls and soil–structure interaction effects. Considering four analysis cases, we outline comparative seismic vulnerability for various analysis cases in terms of fragility functions. The sum of observations highlights that the effects of infills, and soil–structure interaction are damage state sensitive for low-rise RC buildings. Meanwhile, the design considerations will be significantly affected since some performance parameters are more sensitive than the overall fragility. We also observed that the analytical fragility models fundamentally overestimate the actual seismic fragility in the case of low-rise RC buildings.


2021 ◽  
pp. 875529302098197
Author(s):  
Jason M Buenker ◽  
Scott J Brandenberg ◽  
Jonathan P Stewart

We describe two experiments performed on a 9-m-radius geotechnical centrifuge to evaluate dynamic soil–structure interaction effects on the cyclic failure potential of fine-grained soil. Each experiment incorporated three different structures with a range of mass and stiffness properties. Structures were founded on strip footings embedded in a thin layer of sand overlying lightly overconsolidated low-plasticity fine-grained soil. Shaking was applied to the base of the model container, consisting of scaled versions of recorded earthquake ground motions, sweep motions, and step waves. Data recorded during testing were processed and published on the platform DesignSafe. We describe the model configuration, sensor information, shaking events, and data processing procedures and present selected processed data to illustrate key model responses and to provide a benchmark for data use.


1979 ◽  
Vol 69 (1) ◽  
pp. 221-236
Author(s):  
R. R. Little ◽  
D. D. Raftopoulos

abstract An analytical expression describing the three-dimensional vertical soil-structure interaction effects is developed using Laplace and Hankel transformation techniques. Utilizing these transformation techniques and normal mode theory of vibration, an N-mass structural model is coupled to an elastic half-space representing the earth. The resulting interaction equation is solved by numerical iteration techniques for a model of a nuclear power plant subjected to actual earthquake ground excitation. The effects of the soil-structure interaction are evaluated by comparing free-field acceleration spectrum response curves with similar curves determined from the foundation motion. These effects are found to be significant for structures typical of modern nuclear power plants subjected to seismic ground motions.


Sign in / Sign up

Export Citation Format

Share Document