Collapse capacity of reinforced concrete skewed bridges retrofitted with buckling-restrained braces

2019 ◽  
Vol 184 ◽  
pp. 99-114 ◽  
Author(s):  
Yuandong Wang ◽  
Luis Ibarra ◽  
Chris Pantelides
2013 ◽  
Vol 479-480 ◽  
pp. 1170-1174
Author(s):  
Hee Cheul Kim ◽  
Dae Jin Kim ◽  
Min Sook Kim ◽  
Young Hak Lee

The purpose of this study was to evaluate seismic performance of rehabilitated beam-column joint using FRP sheets and Buckling Restrained Braces (BRBs) and provide test data related to rehabilitated beam-column joints in reinforced concrete structures. The seismic performance of total six beam-column specimens is evaluated under cyclic loadings in terms of shear strength, effective stiffness, energy dissipation and ductility. The test results showed wrapping FRP sheets can contribute to increase the effect of confinement and the crack delay. Also retrofitting buckling restrained braces (BRBs) can improve the stiffness and energy dissipation capacity. Both FRP sheets and BRBs can effectively improve the strength, stiffness and ductility of seismically deficient beam-column joints.


2019 ◽  
Vol 15 (10) ◽  
pp. 155014771988135
Author(s):  
Yanchao Yue ◽  
Tangbing Chen ◽  
Yongtao Bai ◽  
Xiaoming Lu ◽  
Yan Wang ◽  
...  

Buckling-restrained braces play a critical role as the first-defendant line in dissipating seismic energy and are often used in concrete frame structures to ensure that the main beam–column members are “undamaged” or significantly elastic during medium earthquakes. The design of the reinforced concrete frame structures with buckling-restrained brace is generally based on the assumption of shear deformation of the structure. The conventional seismic design considers the “second-defendant line design” based on the geometric relationship between the axial deformation and strength of buckling-restrained braces and stratified deformation. This article proposes iterative optimization of the buckling-restrained brace design method and layout scheme based on the nonlinear structural response of the calibrated numerical model, and then approximates the nonlinear structure scheme using a linear method. Time history analyses are performed to prove that the linear design method is highly conservative for estimating seismic intensity, and the proposed design method provides more efficient damage distributions in frame components. The results of the nonlinear performance evaluation and energy analysis indicate that the method proposed in this article can meet the performance design requirements achieving multi-performance criteria.


2014 ◽  
Vol 44 (1) ◽  
pp. 59-78 ◽  
Author(s):  
Christoph Mahrenholtz ◽  
Pao-Chun Lin ◽  
An-Chien Wu ◽  
Keh-Chyuan Tsai ◽  
Shyh-Jiann Hwang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Victor Baca ◽  
Juan Bojórquez ◽  
Edén Bojórquez ◽  
Herian Leyva ◽  
Alfredo Reyes-Salazar ◽  
...  

The control of vibrations and damage in traditional reinforced concrete (RC) buildings under earthquakes is a difficult task. It requires the use of innovative devices to enhance the seismic behavior of concrete buildings. In this paper, we design RC buildings with buckling restrained braces (BRBs) to achieve this objective. For this aim, three traditional RC framed structures with 3, 6, and 9 story levels are designed by using the well-known technique nondominated sorting genetic algorithm (NSGA-II) in order to reduce the cost and maximize the seismic performance. Then, equivalent RC buildings are designed but including buckling restrained braces. Both structural systems are subjected to several narrow-band ground motions recorded at soft soil sites of Mexico City scaled at different levels of intensities in terms of the spectral acceleration at first mode of vibration of the structure Sa(T1). Then, incremental dynamic analysis, seismic fragility, and structural reliability in terms of the maximum interstory drift are computed for all the buildings. For the three selected structures and the equivalent models with BRBs, it is concluded that the annual rate of exceedance is considerably reduced when BRBs are incorporated. For this reason, the structural reliability of the RC buildings with BRBs has a better behavior in comparison with the traditional reinforced concrete buildings. The use of BRBs is a good option to improve strength and seismic behavior and hence the structural reliability of RC buildings subjected to strong earthquake ground motions.


Sign in / Sign up

Export Citation Format

Share Document