Comparison of methodologies for seismic fragility analysis of unreinforced masonry buildings considering epistemic uncertainty

2020 ◽  
Vol 205 ◽  
pp. 110059
Author(s):  
Liang Su ◽  
Xi-long Li ◽  
Yi-pang Jiang
2009 ◽  
Vol 31 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Joonam Park ◽  
Peeranan Towashiraporn ◽  
James I. Craig ◽  
Barry J. Goodno

2012 ◽  
Vol 6 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Amin Karbassi ◽  
Pierino Lestuzzi

As an approach to the problem of seismic vulnerability evaluation of existing buildings using the predicted vul-nerability method, numerical models can be applied to define fragility curves of typical buildings which represent building classes. These curves can be then combined with the seismic hazard to calculate the seismic risk for a building class (or individual buildings). For some buildings types, mainly the unreinforced masonry structures, such fragility analysis is complicated and time consuming if a Finite Element-based method is used. The FEM model has to represent the structural geometry and relationships between different structural elements through element connectivity. Moreover, the FEM can face major challenges to represent large displacements and separations for progressive collapse simulations. Therefore, the Applied Element Method which combines the advantages of FEM with that of the Discrete Element Method in terms of accurately modelling a deformable continuum of discrete materials is used in this paper to perform the fragility analysis for unreinforced masonry buildings. To this end, a series of nonlinear dynamic analyses using the AEM has been per-formed for two unreinforced masonry buildings (a 6-storey stone masonry and a 4-storey brick masonry) using more than 50 ground motion records. Both in-plane and out-of-plane failure have been considered in the damage analysis. The dis-tribution of the structural responses and inter-storey drifts are used to develop spectral-based fragility curves for the five European Macroseismic Scale damage grades.


2020 ◽  
pp. 136943322097728
Author(s):  
Haoran Yu ◽  
Weibin Li

Reduced web section (RWS) connections and welded flange plate (WFP) connections can both effectively improve the seismic performance of a structure by moving plastic hinges to a predetermined location away from the column face. In this paper, two kinds of steel frames—with RWS connections and WFP connections—as well as different frames with welded unreinforced flange connections were studied through seismic fragility analysis. The numerical simulation was conducted by using multiscale FE modelling. Based on the incremental dynamic analysis and pushover analysis methods, probabilistic seismic demand analysis and seismic capability analysis were carried out, respectively. Finally, combined with the above analysis results, probabilistic seismic fragility analysis was conducted on the frame models. The results showed that the RWS connection and WFP connection (without double plates) have little influence on reducing the maximum inter-storey drift ratio under earthquake action. RWS connections slightly reduce the seismic capability in non-collapse stages and improve the seismic collapse resistance of a structure, which exhibits good structural ductility. WFP connections can comprehensively improve the seismic capability of a structure, but the seismic collapse resistance is worse than that of RWS connections when the structure has a large number of storeys. The frame with WFP connections has a lower failure probability at every seismic limit state, while the frame with RWS connections sacrifices some of its structural safety in non-collapse stages to reduce the collapse probability.


Sign in / Sign up

Export Citation Format

Share Document