Seismic performance of stabilised/unstabilised rammed earth walls

2021 ◽  
Vol 245 ◽  
pp. 112982
Author(s):  
Moein Ramezanpour ◽  
Abolfazl Eslami ◽  
Hamid Ronagh
2019 ◽  
Vol 11 (5) ◽  
pp. 1296 ◽  
Author(s):  
Quoc-Bao Bui ◽  
Tan-Trung Bui ◽  
Mai-Phuong Tran ◽  
Thi-Loan Bui ◽  
Hoang-An Le

Rammed earth (RE) is a construction material which is made by compacting the soil in a formwork. This material is attracting the attention of the scientific community due to its sustainable characteristics. Among different aspects to be investigated, the seismic performance remains an important topic which needs advanced investigations. The existing studies in the literature have mainly adopted simplified approaches to investigate the seismic performance of RE structures. The present paper adopts a numerical approach to investigate the seismic behavior of RE walls with an L-form cross-section. The 3D FEM model used can take into account the plasticity and damage of RE layers and the interfaces. The model was first validated by an experimental test presented in the literature. Then, the model was employed to assess the seismic performance of a L-form wall of a RE house at different amplitudes of earthquake excitations. Influences of the cross-section form on the earthquake performance of RE walls were also investigated. The results show that the L-form cross-section wall has a better seismic performance than a simple rectangular cross-section wall with similar dimensions. For the L-form cross-section wall, the damage observed concentrates essentially on the connection between two flanges of the wall.


2018 ◽  
Vol 21 (13) ◽  
pp. 2045-2055 ◽  
Author(s):  
Tiegang Zhou ◽  
Bo Liu ◽  
Xiang Zhao ◽  
Jun Mu

With the introduction of the modern rammed earth technique, a large number of modern rammed earth buildings were constructed in China Mainland. China has a vast territory, which faces the Circum-Pacific seismic belt on the east and the Eurasian seismic belt on the south; earthquake has constantly threatened the safety of people’s lives and property. Consequently, it is necessary to probe in the seismic performance of rammed earth buildings. Two un-stabilized rammed earth specimens, one un-stabilized rammed earth reinforced with geogrid sheets’ specimens, and four stabilized rammed earth specimens were built for obtaining a better insight on the behavior of un-stabilized rammed earth/stabilized rammed earth walls under cyclic in-plane loads. Testing results are discussed in terms of failure mode, shear capacity, hysteretic curve, stiffness degradation, and total energy dissipation to provide comparisons of the seismic performance between un-stabilized rammed earth and stabilized rammed earth specimens. Different failure modes indicated that the cohesion between particles and the bond strength between layers are the two key parameters for the shear capacity of rammed earth buildings. It is also demonstrated that stabilized rammed earth specimens have higher shear and energy dissipation capacity but weaker deformation capacity than un-stabilized rammed earth.


2017 ◽  
Vol 145 ◽  
pp. 153-161 ◽  
Author(s):  
Ranime El-Nabouch ◽  
Quoc-Bao Bui ◽  
Olivier Plé ◽  
Pascal Perrotin

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 325
Author(s):  
Giada Giuffrida ◽  
Maurizio Detommaso ◽  
Francesco Nocera ◽  
Rosa Caponetto

The renewed attention paid to raw earth construction in recent decades is linked to its undoubted sustainability, cost-effectiveness, and low embodied energy. In Italy, the use of raw earth as a construction material is limited by the lack of a technical reference standard and is penalised by the current energy legislation for its massive behaviour. Research experiences, especially transoceanic, on highly performative contemporary buildings made with natural materials show that raw earth can be used, together with different types of reinforcements, to create safe, earthquake-resistant, and thermally efficient buildings. On the basis of experimental data of an innovative fibre-reinforced rammed earth material, energy analyses are developed on a rammed earth building designed for a Mediterranean climate. The paper focuses on the influences that different design solutions, inspired by traditional bioclimatic strategies, and various optimised wall constructions have in the improvement of the energy performance of the abovementioned building. These considerations are furthermore compared with different design criteria aiming at minimising embodied carbon in base material choice, costs, and discomfort hours. Results have shown the effectiveness of using the combination of massive rammed earth walls, night cross ventilation, and overhangs for the reduction of energy demand for space cooling and the improvement of wellbeing. Finally, the parametric analysis of thermal insulation has highlighted the economic, environmental, and thermophysical optimal solutions for the rammed earth envelope.


Solar Energy ◽  
2017 ◽  
Vol 141 ◽  
pp. 70-80 ◽  
Author(s):  
Lucile Soudani ◽  
Monika Woloszyn ◽  
Antonin Fabbri ◽  
Jean-Claude Morel ◽  
Anne-Cécile Grillet

2021 ◽  
pp. 103113
Author(s):  
Tien-Dung Nguyen ◽  
Tan-Trung Bui ◽  
Ali Limam ◽  
Thi-Loan Bui ◽  
Quoc-Bao Bui

2013 ◽  
pp. 383-388
Author(s):  
V Cristini ◽  
C Mileto ◽  
F López-Manzanares ◽  
J Checa
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document