Unsupervised Machine Learning for Robust Bridge Damage Detection: Full-Scale Experimental Validation

2021 ◽  
Vol 249 ◽  
pp. 113250
Author(s):  
Emmanuel Akintunde ◽  
Saeed Eftekhar Azam ◽  
Ahmed Rageh ◽  
Daniel G. Linzell
2020 ◽  
Vol 135 ◽  
pp. 106380 ◽  
Author(s):  
F. Huseynov ◽  
C. Kim ◽  
E.J. OBrien ◽  
J.M.W. Brownjohn ◽  
D. Hester ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 34
Author(s):  
Emmanuel Akintunde ◽  
Saeed Eftekhar Azam ◽  
Ahmed Rageh ◽  
Daniel Linzell

Over the decades, visual inspection has been adopted as a means to monitor infrastructure health. While visual inspection provides insights on a bridge’s condition, it has been generally agreed that it is insufficient and inefficient. This has called for the creation of autonomous, robust, continuous, and quantitative structural health monitoring (SHM) systems to detect potential deficiencies in an early stage, and monitor future condition. Various methods have been explored that associate changes in condition with changes in the structure’s vibration characteristics. These methods have been mostly tested on laboratory specimens experiencing simulated damage. There is need for extending validation of these SHM methods on in-situ structures experiencing real damage under operational and environmental conditions. This paper summarizes a full-scale experiment exploring bridge damage detection effectiveness under variable traffic loads. Three different types of damage were introduced into a full-scale, bridge deck mock-up. These included crash-induced bridge barrier damage, controlled barrier damage, and damage to the deck slab. At the end of each introduced damage case, the bridge’s response to the multiple passages was recorded using specific vehicles specifications. Data was extracted and analyzed to identify damage using principal component analysis (PCA) and independent component analysis (ICA) as damage-sensitive features. The extracted damage features were thereafter used as input for unsupervised learning (novelty detection). One interesting observation was how PCA revealed possibly significant damage after a crash, which under visual inspection appeared to be minor. Novelty detection using PCA as its damage feature was shown to provide robust damage detection irrespective of load, speed variation, and signal noise levels.


2020 ◽  
pp. 147592172094820
Author(s):  
Jingpei Dan ◽  
Wending Feng ◽  
Xia Huang ◽  
Yuming Wang

While machine learning has been increasingly incorporated into structural damage detection, most existing methods still rely on hand-crafted damage features. For a given structure, the performance of detection is heavily impacted by the quality of features, and choosing the optimal features may be difficult and time-consuming. Various time series classification algorithms studied in machine learning are able to classify structural responses into damage conditions without feature engineering; however, most of them only deal with univariate time series classification and are either inapplicable or ineffective on multivariate (i.e. multi-dimensional) data, thus unable to fully utilize all sensors available on real bridges. To address these limitations, we propose a global bridge damage detection method based on multivariate time series classification with optimized functional echo state networks. In this method, data from multiple sensors are directly used as inputs without feature extraction. Training of the functional echo state network is simple and straightforward, and by leveraging the nonlinear mapping capacity and dynamic memory of functional echo state network, the separability of different classes, that is, classifying accuracy is enhanced compared to conventional classification algorithms. Furthermore, hyperparameters of the functional echo state network are automatically optimized with particle swarm optimization algorithm, which further improves the accuracy while saving the cost of manual tuning. Experimental results on two classical data sets show that functional echo state network achieves high and stable accuracy, which indicate that our method can detect global bridge structural damage efficiently by analyzing multiple sensor data, and is prospected to be applied in real bridge structural health monitoring systems.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4035 ◽  
Author(s):  
Abdollah Malekjafarian ◽  
Fatemeh Golpayegani ◽  
Callum Moloney ◽  
Siobhán Clarke

This paper proposes a new two-stage machine learning approach for bridge damage detection using the responses measured on a passing vehicle. In the first stage, an artificial neural network (ANN) is trained using the vehicle responses measured from multiple passes (training data set) over a healthy bridge. The vehicle acceleration or Discrete Fourier Transform (DFT) spectrum of the acceleration is used. The vehicle response is predicted from its speed for multiple passes (monitoring data set) over the bridge. Root-mean-square error is used to calculate the prediction error, which indicates the differences between the predicted and measured responses for each passage. In the second stage of the proposed method, a damage indicator is defined using a Gaussian process that detects the changes in the distribution of the prediction errors. It is suggested that if the bridge condition is healthy, the distribution of the prediction errors will remain low. A recognizable change in the distribution might indicate a damage in the bridge. The performance of the proposed approach was evaluated using numerical case studies of vehicle–bridge interaction. It was demonstrated that the approach could successfully detect the damage in the presence of road roughness profile and measurement noise, even for low damage levels.


Author(s):  
Bjørn T. Svendsen ◽  
Gunnstein T. Frøseth ◽  
Ole Øiseth ◽  
Anders Rønnquist

AbstractThere is a need for reliable structural health monitoring (SHM) systems that can detect local and global structural damage in existing steel bridges. In this paper, a data-based SHM approach for damage detection in steel bridges is presented. An extensive experimental study is performed to obtain data from a real bridge under different structural state conditions, where damage is introduced based on a comprehensive investigation of common types of steel bridge damage reported in the literature. An analysis approach that includes a setup with two sensor groups for capturing both the local and global responses of the bridge is considered. From this, an unsupervised machine learning algorithm is applied and compared with four supervised machine learning algorithms. An evaluation of the damage types that can best be detected is performed by utilizing the supervised machine learning algorithms. It is demonstrated that relevant structural damage in steel bridges can be found and that unsupervised machine learning can perform almost as well as supervised machine learning. As such, the results obtained from this study provide a major contribution towards establishing a methodology for damage detection that can be employed in SHM systems on existing steel bridges.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document