Experimental validation of a damage detection approach on a full-scale highway sign support truss

2012 ◽  
Vol 28 ◽  
pp. 195-211 ◽  
Author(s):  
Guirong Yan ◽  
Shirley J. Dyke ◽  
Ayhan Irfanoglu
2021 ◽  
Vol 249 ◽  
pp. 113250
Author(s):  
Emmanuel Akintunde ◽  
Saeed Eftekhar Azam ◽  
Ahmed Rageh ◽  
Daniel G. Linzell

2021 ◽  
Vol 11 (10) ◽  
pp. 4589
Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Marko Bartolac ◽  
Ana Skender

The main principle of vibration-based damage detection in structures is to interpret the changes in dynamic properties of the structure as indicators of damage. In this study, the mode shape damage index (MSDI) method was used to identify discrete damages in plate-like structures. This damage index is based on the difference between modified modal displacements in the undamaged and damaged state of the structure. In order to assess the advantages and limitations of the proposed algorithm, we performed experimental modal analysis on a reinforced concrete (RC) plate under 10 different damage cases. The MSDI values were calculated through considering single and/or multiple damage locations, different levels of damage, and boundary conditions. The experimental results confirmed that the MSDI method can be used to detect the existence of damage, identify single and/or multiple damage locations, and estimate damage severity in the case of single discrete damage.


2016 ◽  
Vol 62 ◽  
pp. 24-44 ◽  
Author(s):  
Amir H. Alavi ◽  
Hassene Hasni ◽  
Nizar Lajnef ◽  
Karim Chatti ◽  
Fred Faridazar

2013 ◽  
Vol 569-570 ◽  
pp. 457-464 ◽  
Author(s):  
Fabio Luis Marques dos Santos ◽  
Bart Peeters ◽  
Herman van der Auweraer ◽  
Luiz Carlos Sandoval Góes

The use of composites in the aircraft industry has generated a great need for structural health monitoring and damage detection systems, to allow for safer use of complex materials. Such is the case with helicopter blades - these components nowadays are mostly composed of carbon fiber or glass fiber reinforced plastics laminates, epoxy and honeycomb filled core structures. The use of composite materials on the main rotor blade also allows for more complex and efficient shapes to be designed, but at the same time, their use requires an additional effort when it comes to structural monitoring, since damage can occur and go unnoticed. This work presents experimental results for structural health monitoring method based on strain energy. The test subject is a full-scale composite helicopter main rotor blade, which is a highly flexible, slender beam that can display unusual dynamic behavior with orthotropic behavior. This damage detection method is based on the modal strain properties, and a damage detection index is used to identify and quantify damage. A test setup was built to carry out an experimental modal analysis on the main rotor blade. For that purpose, a total of 55 uniaxial accelerometers were used on the helicopter blade to measure the displacement modes of the structure. To compute the strain modes from the displacement modes, central differences approximation is used. Damage is introduced on the blade by attaching a small mass to two different locations. Experimental results show the possibility of locating damage in this case.


2015 ◽  
Vol 220-221 ◽  
pp. 328-332
Author(s):  
Michal Dziendzikowski ◽  
Krzysztof Dragan ◽  
Artur Kurnyta ◽  
Sylwester Klysz ◽  
Andrzej Leski

The paper presents an approach to develop a system for fatigue crack growth monitoring and early damage detection in the PZL – 130 ORLIK TC II turbo-prop military trainer aircraft structure. The system functioning is based on elastic waves propagation excited in the structure by piezoelectric PZT transducers. In the paper, a built block approach for the system design, signal processing as well as damage detection is presented. Description of damage detection capabilities are delivered in the paper and some issues concerning the proposed signal processing methods and their application to crack growth estimation models are discussed. Selected preliminary results obtained during the Full Scale Fatigue Test thus far are also presented.


2020 ◽  
Vol 135 ◽  
pp. 106380 ◽  
Author(s):  
F. Huseynov ◽  
C. Kim ◽  
E.J. OBrien ◽  
J.M.W. Brownjohn ◽  
D. Hester ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document