New generation of bolted bracket connections: Safe load-carrying capacity and structural damage assessment

2022 ◽  
Vol 252 ◽  
pp. 113662
Author(s):  
Bahram Mirzaie Abar ◽  
Mohammad Soheil Ghobadi
2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


Author(s):  
M. Gaber Mohamed

Abstract This paper introduces a new generation of robotic mechanisms. Such mechanisms are intermediate between the familiar serial and the fully-parallel robotic mechanisms. They usually comprise several subassemblies that are serially connected to one another. Each subassembly is basically an over constrained fully parallel kinematic chain. Such mechanisms are called “Partially-Parallel Robotic Mechanisms.” A type synthesis of planar and spatial partially-parallel robotic mechanisms is performed. Several practical designs are then introduced and studied for future robotic applications. Several performance criteria of this type of mechanisms are discussed and compared with those of serial as well as fully-parallel robotic mechanisms. Partially-parallel mechanisms are superior than serial mechanisms in rigidity, strength precision positioning and load carrying capacity. Furthermore, they are relatively less complex and have larger range of motion than fully-parallel mechanisms.


1981 ◽  
Vol 8 (2) ◽  
pp. 218-229 ◽  
Author(s):  
Baidar Bakht

The anatomy of a test to realistically determine the safe load carrying capacity of a bridge is presented. Analytically the bridge was declared to be unsuitable for carrying unrestricted traffic and yet the test showed that the bridge was capable of safely sustaining normal loads. The test points out the significance of the structure's response to varying temperatures, and shows that the load carrying capacity of the bridge depends substantially on such interaction of the various components as was not intentionally provided for in the original design.The test was helpful not only in determining the safe load carrying capacity of the bridge but was also instrumental in diagnosing the possible source of distress in the bridge deck slab.


2019 ◽  
Vol 35 (3) ◽  
pp. 1367-1396 ◽  
Author(s):  
Xiaowei Wang ◽  
Abdollah Shafieezadeh ◽  
Aijun Ye

During earthquakes, extended pile-shaft–supported bridges in laterally spreading ground can undergo inelastic deformations, especially in their embedded portions. Following earthquakes, it is critical to assess damage to these difficult-to-inspect portions and determine whether vehicles can safely pass bridges. This paper aims to identify optimal aboveground engineering demand parameters (EDPs) that are readily measurable after earthquakes and have high-quality probabilistic associations with post-earthquake load-carrying capacity of bridges as well as underground difficult-to-inspect EDPs. For this purpose, an experimentally validated bridge-soil-foundation model considering liquefaction-induced lateral spreading is adopted and subjected to ground-motion time histories in the transverse direction. Subsequently, pushdown analyses are performed to assess the post-earthquake vertical load-carrying capacity of bridges. Metrics such as efficiency, practicality, and measurability are established and examined for EDPs. Results show that residual column drift ratio is the optimal EDP for load-carrying capacity assessments, whereas maximum column drift ratio best predicts pile demands. Furthermore, developed probabilistic relationships between residual and maximum column drift ratios will assist in preliminary post-earthquake evaluation of bridges for damage assessment and posting decisions.


10.14311/472 ◽  
2003 ◽  
Vol 43 (5) ◽  
Author(s):  
J. Ryś ◽  
H. Sanecki ◽  
A. Trojnacki

This paper presents the design procedure for a gear wheel-shaft direct frictional joint. The small difference between the operating pitch diameter of the gear and the mounting diameter of the frictional joint is the key feature of the connection. The contact surface of the frictional joint must be placed outside the bottom land of the gear, and the geometry of the joint is limited to the specific type of solutions.The strength analysis is based on the relation between the torque and statistical load intensity of the gear transmission. Several dimensionless parameters are introduced to simplify the calculations. Stress-strain verifying analysis with respect to combined loading, the condition of appropriate load-carrying capacity of the frictional joint and the fatigue strength of the shaft are applied to obtain the relations between the dimensions of the joint and other parameters. The final engineering solution may then be suggested. The approach is illustrated by a numerical example.The proposed procedure can be useful in design projects for small, high-powered modern reducers and new-generation geared motors, in particular when manufactured in various series of types.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Sign in / Sign up

Export Citation Format

Share Document