Analytical model for the capacities of traditional Japanese timber frames with deep beams

2022 ◽  
Vol 253 ◽  
pp. 113764
Author(s):  
Zherui Li ◽  
Hiroshi Isoda ◽  
Akihisa Kitamori ◽  
Takafumi Nakagawa ◽  
Yasuhiro Araki ◽  
...  
Keyword(s):  
2018 ◽  
Vol 22 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Yubing Leng ◽  
Xiaobing Song

Steel–concrete–steel composite structure comprises a concrete core sandwiched between the outer steel plates. It combines the advantages of both steel and reinforced concrete structures. In thick steel–concrete–steel structural members, the shear performance becomes rather critical. Experimental works have been carried out to study the failure mode and shear strength of steel–concrete–steel deep beams, and an analytical model has been proposed. In this article, parametric studies are carried out on the original analytical model to discuss the influence of each geometric and material variable on the shear strength, and a simplified strength predicting method is developed. Different shear failure modes, identified as “top+bottom triangular area damage” or “bottom triangular area damage+horizontal cracking,” can be predicted with the method. The simplified approach shows good correlation with the experimental results, regarding to shear resisting pattern and failure modes. Through the simplified formulas, the upper and lower bounds of the shear resistance are obtained. The requirement on stud spacing to maintain full composite behavior in the top and bottom triangular areas and the requirement on concrete strength are proposed.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-911-C8-912
Author(s):  
Yu. V. Rakitin ◽  
V. T. Kalinnikov
Keyword(s):  

PCI Journal ◽  
1974 ◽  
Vol 19 (4) ◽  
pp. 86-99
Author(s):  
Michel Sargious ◽  
Gamil Tadros
Keyword(s):  

2002 ◽  
Vol 4 (1-2) ◽  
pp. 26
Author(s):  
Paulo Fernando Lavalle Heilbron Filho ◽  
Jesus Salvador Perez Guerrero ◽  
Elizabeth May Pontedeiro ◽  
Nerbe J. Ruperti, Jr. ◽  
Renato M. Cotta

Sign in / Sign up

Export Citation Format

Share Document