scholarly journals Evaporating characteristics of diesel sprays under split-injection condition with a negative dwell time

Author(s):  
Yu Jin ◽  
Qing Wu ◽  
Chang Zhai ◽  
Jaeheun Kim ◽  
Hong-liang Luo ◽  
...  
2013 ◽  
Vol 6 (3) ◽  
pp. 1626-1641 ◽  
Author(s):  
Thorsten Brands ◽  
Thomas Huelser ◽  
Peter Hottenbach ◽  
Hans-Jürgen Koss ◽  
Gerd Grunefeld

Author(s):  
Samir Chandra Ray ◽  
Jaeheun Kim ◽  
Scinichi Kakami ◽  
Keiya Nishida ◽  
Youichi Ogata

The effects of dwell time on the mixture formation and combustion processes of diesel spray are investigated experimentally. A commercial multihole injector with a 0.123 mm hole diameter is used to inject the fuel. The injection procedure is either a single or split injection with different dwell times, whereas the total amount of injected fuel mass is 5.0 mg per hole. Three dwell times are selected, that is, 0.12, 0.32 and 0.54 ms, with a split ratio of 7:3 based on previous findings. The vapour phase is observed, and the mixture formation pertaining to the equivalence ratio is analysed using the tracer laser absorption scattering (LAS) technique. A high-speed video camera is used to visualise the spray combustion flame luminosity, whereas a two-colour pyrometer system is used to evaluate the soot concentrations and flame temperature. An analysis of the mixture formation based on the spray evaporating condition reveals a more concentrated area of the rich mixture within a 0.32 ms dwell time. In the shortest dwell time of 0.12 ms, the equivalence ratio distribution decreases uniformly from the rich mixture region to the lean mixture region. In the case involving a shorter dwell time, a suitable position for the second injection around the boundaries of the first injection is obtained by smoothly growing the lean mixture and avoiding the large zone of the rich mixture. Therefore, the shortest dwell time is acceptable for mixture formation, considering the overall distribution of the equivalence ratios. Spray combustion analysis results show that the soot formation rate of the single injection and 0.32 ms dwell time case is high and decreases quickly, implying a rapid reduction in the high amount of soot. Consequently, 0.12 ms can be considered the optimal dwell time due to the ignition delay and relatively low soot emission afforded.


Transport ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 115-125
Author(s):  
Hadi Taghavifar

The application of single injection in diesel engines has been becoming outdated given the advent of High-Pressure Common Rail (HPCR) system. Multiple injection or split injection presents more controllability over the economic use of fuel during the injection process. In this sense, a thorough investigation of a new concept with the use of divergent injection and split injection is proposed, based on which the whole chamber area was covered with two nozzles of different angles. Moreover, the system allows the optimal use of time span for injection in by assigning different dwell-time periods between injection pulses. The results indicate that increasing the divergence of nozzle angles could possibly bring about arise of Uniformity Index (UI) and Indicated Power (IP) of engine. In contrast, increase of dwell time leads to deterioration of Indicated Mean Effective Pressure (IMEP) and Indicated Specific Fuel Consumption (ISFC). The data points of several injection schemes are presented in IMEP-NOx and ISFC-soot plots in comparison with single injection that shows adoption of a proper injection policy can establish an ideal trade-off between emissions and engine performance.


2018 ◽  
Vol 20 (6) ◽  
pp. 606-623 ◽  
Author(s):  
Jose M Desantes ◽  
José M García-Oliver ◽  
Antonio García ◽  
Tiemin Xuan

Even though studies on split-injection strategies have been published in recent years, there are still many remaining questions about how the first injection affects the mixing and combustion processes of the second one by changing the dwell time between both injection events or by the first injection quantity. In this article, split-injection diesel sprays with different injection strategies are investigated. Visualization of n-dodecane sprays was carried out under both non-reacting and reacting operating conditions in an optically accessible two-stroke engine equipped with a single-hole diesel injector. High-speed Schlieren imaging was applied to visualize the spray geometry development, while diffused background-illumination extinction imaging was applied to quantify the instantaneous soot production (net result of soot formation and oxidation). For non-reacting conditions, it was found that the vapor phase of second injection penetrates faster with a shorter dwell time and independently of the duration of the first injection. This could be explained in terms of one-dimensional spray model results, which provided information on the local mixing and momentum state within the flow. Under reacting conditions, interaction between the second injection and combustion recession of the first injection is observed, resulting in shorter ignition delay and lift-off compared to the first injection. However, soot production behaves differently with different injection strategies. The maximum instantaneous soot mass produced by the second injection increases with a shorter dwell time and with longer first injection duration.


Sign in / Sign up

Export Citation Format

Share Document