scholarly journals Residential energy demands in Rwanda: Evidence from Robust models

Energy Policy ◽  
2022 ◽  
Vol 160 ◽  
pp. 112665
Author(s):  
Aimable Nsabimana ◽  
Bosco Johnson Rukundo ◽  
Alice Mukamugema ◽  
Jean Chrysostome Ngabitsinze
Genus ◽  
2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Yi Zeng ◽  
Hanmo Yang ◽  
Zhenglian Wang ◽  
Lan Li

AbstractThis article presents analyses and projections of the residential energy demands in Hebei Province of China, using the ProFamy extended cohort-component method and user-friendly free software and conventional demographic data as input. The results indicate that the future increase in residential energy demands will be dominated by large increase in small households with 1–2 persons. We found that increase of residential energy demands will be mainly driven by the rapid increase of older adults’ households. Comparisons between residential energy demand projections by household changes and by population changes demonstrate that projections by population changes seriously under-estimate the future residential energy demands. We recommend that China needs to adopt policies to encourage and facilitate older parents and adult children to live together or near-by, and support rural-to-urban family migration. Promoting inter-generation co-residence or living near-by between older parents and young adults would result in a mutually beneficial outcome for both older and younger generations as well as to effectively reduce energy demands. We suggest governments to carefully formulate strategies on efficient residential energy use to cope with the rapid households and population aging, and strengthen data collections/analyses on household residential energy demands for sound policy-making and sustainable development.


1981 ◽  
Vol 11 (4) ◽  
pp. 295-306 ◽  
Author(s):  
Stephanie A. Mathews ◽  
Stephen B. Fawcett ◽  
Russell G. Winn ◽  
R. Mark Mathews

2020 ◽  
Vol 12 (19) ◽  
pp. 8016
Author(s):  
Feng Wang ◽  
Min Wu ◽  
Jiachen Hong

To achieve the national carbon intensity (NCI) target, China should adopt effective mitigation measures. This paper aims to examine the effects of key mitigation measures on NCI. Using the input-output table in 2017, this paper establishes the elasticity model of NCI to investigate the effects of industrial development, intermediate input coefficients, energy efficiency, and residential energy saving on NCI, and further evaluates the contributions of key measures on achieving NCI target. The results are shown as follows. First, the development of seven sectors will promote the increase of NCI while that of 21 sectors will reduce NCI. Second, NCI will decrease significantly with the descending of intermediate input coefficients of sectors, especially electricity production and supply. Third, improving energy efficiency and residential energy saving degree could reduce NCI, but the latter has limited contribution. Fourth, the development of all sectors will reduce NCI by 10.11% in 2017–2022 if sectors could continue the historical development trends. Fifth, assuming that sectors with rising intermediate input coefficients would keep their coefficients unchanged in the predicting period and sectors with descending coefficients would continue the historical descending trend, the improvement of technology and management of all sectors will reduce NCI by 14.02% in 2017–2022.


2016 ◽  
Vol 40 (4) ◽  
pp. 481-489
Author(s):  
Shu-Tsung Hsu ◽  
Yean-San Long ◽  
Teng-Chun Wu

The photovoltaic (PV) industry is expanding rapidly to meet the growing renewable-energy demands globally. The failure-rate analysis indicated that a large portion of the accelerated PV module qualification failures were related to the failure of PV cell itself, which was leading to the yield loss of PV products during shipping or transportation. Therefore, the damaged cell (or module) caused by shipping is always one of the serious problems to impact the long-term reliability of PV product. This paper aims to propose a new test method of reliability evaluation for shipping pallet of solar product. The first scenario is the test pallet shipped in fab (e.g., fork-lift truck or hand-pallet truck). The second scenario is the test pallet transported from fab to fab by different vehicle (e.g., truck, train, aircraft, and shipboard). Consequently, detailed results were applied to SEMI Doc. 5431 and released as SEMI PV56-1214 by voting in December 2014. The solar cell/module/system makers and buyers, or any other party interested like package design, can thus have a common document to refer to when desired.


Sign in / Sign up

Export Citation Format

Share Document