Changes in carbohydrates triggered by low temperature waterlogging modify photosynthetic acclimation to cold in Festuca pratensis

2016 ◽  
Vol 122 ◽  
pp. 60-67 ◽  
Author(s):  
Barbara Jurczyk ◽  
Marcin Rapacz ◽  
Ewa Pociecha ◽  
Janusz Kościelniak
2005 ◽  
Vol 41 (2) ◽  
pp. 322-334 ◽  
Author(s):  
Robert A. Burns ◽  
C. Danielle MacDonald ◽  
Patrick J. McGinn ◽  
Douglas. A. Campbell

Plants ◽  
2017 ◽  
Vol 6 (4) ◽  
pp. 32 ◽  
Author(s):  
Nityananda Khanal ◽  
Geoffrey Bray ◽  
Anna Grisnich ◽  
Barbara Moffatt ◽  
Gordon Gray

2016 ◽  
Vol 43 (10) ◽  
pp. 931 ◽  
Author(s):  
Barbara Jurczyk ◽  
Ewa Pociecha ◽  
Janusz Košcielniak ◽  
Marcin Rapacz

Increased precipitation and snowmelt during warmer winters may lead to low-temperature waterlogging of plants. Perennial ryegrass (Lolium perenne L.) is one of the most important cool-season grasses in agriculture. It is well adapted to cold climates, and may be considered as a model system for studying the mechanisms involved in cold acclimation. The aim of this study was to evaluate the effects of waterlogging on photosynthetic acclimation to cold in perennial ryegrass. Two L. perenne genotypes that differ in their responses to waterlogging in terms of freezing tolerance were compared. We evaluated the effects of waterlogging during cold acclimation on the water-soluble carbohydrate concentration, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, photochemical efficiency of PSII, and transcript levels of the Rubisco activase (RcaA) and sucrose-sucrose fructosyltransferase (1-SST) genes. The genotype that did not accumulate water-soluble carbohydrates in the leaf under waterlogging showed a lower degree of feedback inhibition of photosynthesis under low temperature, and activated a photochemical mechanism of photosynthetic acclimation to cold. The other genotype accumulated water-soluble carbohydrates in the leaf during waterlogging, and activated a non-photochemical mechanism under cold conditions. Different photosynthetic acclimation systems to cold under waterlogging may be activated in these two contrasting L. perenne genotypes.


Plant Science ◽  
2012 ◽  
Vol 183 ◽  
pp. 143-148 ◽  
Author(s):  
Barbara Jurczyk ◽  
Marcin Rapacz ◽  
Katarzyna Budzisz ◽  
Weronika Barcik ◽  
Monika Sasal

Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
S. Edith Taylor ◽  
Patrick Echlin ◽  
May McKoon ◽  
Thomas L. Hayes

Low temperature x-ray microanalysis (LTXM) of solid biological materials has been documented for Lemna minor L. root tips. This discussion will be limited to a demonstration of LTXM for measuring relative elemental distributions of P,S,Cl and K species within whole cells of tobacco leaves.Mature Wisconsin-38 tobacco was grown in the greenhouse at the University of California, Berkeley and picked daily from the mid-stalk position (leaf #9). The tissue was excised from the right of the mid rib and rapidly frozen in liquid nitrogen slush. It was then placed into an Amray biochamber and maintained at 103K. Fracture faces of the tissue were prepared and carbon-coated in the biochamber. The prepared sample was transferred from the biochamber to the Amray 1000A SEM equipped with a cold stage to maintain low temperatures at 103K. Analyses were performed using a tungsten source with accelerating voltages of 17.5 to 20 KV and beam currents from 1-2nA.


Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.


Author(s):  
Gert Ehrlich

The field ion microscope, devised by Erwin Muller in the 1950's, was the first instrument to depict the structure of surfaces in atomic detail. An FIM image of a (111) plane of tungsten (Fig.l) is typical of what can be done by this microscope: for this small plane, every atom, at a separation of 4.48Å from its neighbors in the plane, is revealed. The image of the plane is highly enlarged, as it is projected on a phosphor screen with a radius of curvature more than a million times that of the sample. Müller achieved the resolution necessary to reveal individual atoms by imaging with ions, accommodated to the object at a low temperature. The ions are created at the sample surface by ionization of an inert image gas (usually helium), present at a low pressure (< 1 mTorr). at fields on the order of 4V/Å.


Sign in / Sign up

Export Citation Format

Share Document