Bulk standards for low-temperature biological x-ray microanalysis

Author(s):  
P. Echlin ◽  
M. McKoon ◽  
E.S. Taylor ◽  
C.E. Thomas ◽  
K.L. Maloney ◽  
...  

Although sections of frozen salt solutions have been used as standards for x-ray microanalysis, such solutions are less useful when analysed in the bulk form. They are poor thermal and electrical conductors and severe phase separation occurs during the cooling process. Following a suggestion by Whitecross et al we have made up a series of salt solutions containing a small amount of graphite to improve the sample conductivity. In addition, we have incorporated a polymer to ensure the formation of microcrystalline ice and a consequent homogenity of salt dispersion within the frozen matrix. The mixtures have been used to standardize the analytical procedures applied to frozen hydrated bulk specimens based on the peak/background analytical method and to measure the absolute concentration of elements in developing roots.

2016 ◽  
Vol 13 (1) ◽  
pp. 01-06
Author(s):  
A. A Ogacacho ◽  
B. O. Aduda

Ultrathin films (50-150nm thick) cuprous oxide (Cu2O) thin films were deposited by low temperature thermal oxidation technique. The structural, optical and photoelectrochemical properties of the thin films were investigated. X-ray diffraction (XRD) and high resolution scanning electron microscope (SEM) was used to study the phase composition and the thin films’ microstructure respectively. XRD results showed that Cu2O was the dominant phase albeit some trace CuO peaks were also observed indicating surface formation of an extremely layer of CuO probably during the cooling process following either deposition or during the annealing steps. SEM showed a highly nanostructure consisting long narrow nanorods with broadening to the surface but with extremely narrow, sharp cylindrical roots standing on the substrate. Photoelectrochemical properties of the films were studied via a standard three electrode using a saturated calomel cell (SCE).


2008 ◽  
Vol 92 (16) ◽  
pp. 161901 ◽  
Author(s):  
S. Y. Wu ◽  
J.-Y. Ji ◽  
M. H. Chou ◽  
W.-H. Li ◽  
G. C. Chi

Author(s):  
John C. Russ ◽  
Nicholas C. Barbi

The rapid growth of interest in attaching energy-dispersive x-ray analysis systems to transmission electron microscopes has centered largely on microanalysis of biological specimens. These are frequently either embedded in plastic or supported by an organic film, which is of great importance as regards stability under the beam since it provides thermal and electrical conductivity from the specimen to the grid.Unfortunately, the supporting medium also produces continuum x-radiation or Bremsstrahlung, which is added to the x-ray spectrum from the sample. It is not difficult to separate the characteristic peaks from the elements in the specimen from the total continuum background, but sometimes it is also necessary to separate the continuum due to the sample from that due to the support. For instance, it is possible to compute relative elemental concentrations in the sample, without standards, based on the relative net characteristic elemental intensities without regard to background; but to calculate absolute concentration, it is necessary to use the background signal itself as a measure of the total excited specimen mass.


Author(s):  
William F. Tivol ◽  
Murray Vernon King ◽  
D. F. Parsons

Feasibility of isomorphous substitution in electron diffraction is supported by a calculation of the mean alteration of the electron-diffraction structure factors for hemoglobin crystals caused by substituting two mercury atoms per molecule, following Green, Ingram & Perutz, but with allowance for the proportionality of f to Z3/4 for electron diffraction. This yields a mean net change in F of 12.5%, as contrasted with 22.8% for x-ray diffraction.Use of the hydration chamber in electron diffraction opens prospects for examining many proteins that yield only very thin crystals not suitable for x-ray diffraction. Examination in the wet state avoids treatments that could cause translocation of the heavy-atom labels or distortion of the crystal. Combined with low-fluence techniques, it enables study of the protein in a state as close to native as possible.We have undertaken a study of crystals of rat hemoglobin by electron diffraction in the wet state. Rat hemoglobin offers a certain advantage for hydration-chamber work over other hemoglobins in that it can be crystallized from distilled water instead of salt solutions.


Author(s):  
S. Edith Taylor ◽  
Patrick Echlin ◽  
May McKoon ◽  
Thomas L. Hayes

Low temperature x-ray microanalysis (LTXM) of solid biological materials has been documented for Lemna minor L. root tips. This discussion will be limited to a demonstration of LTXM for measuring relative elemental distributions of P,S,Cl and K species within whole cells of tobacco leaves.Mature Wisconsin-38 tobacco was grown in the greenhouse at the University of California, Berkeley and picked daily from the mid-stalk position (leaf #9). The tissue was excised from the right of the mid rib and rapidly frozen in liquid nitrogen slush. It was then placed into an Amray biochamber and maintained at 103K. Fracture faces of the tissue were prepared and carbon-coated in the biochamber. The prepared sample was transferred from the biochamber to the Amray 1000A SEM equipped with a cold stage to maintain low temperatures at 103K. Analyses were performed using a tungsten source with accelerating voltages of 17.5 to 20 KV and beam currents from 1-2nA.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

The determination of the absolute polarity of a polar material is often crucial to the understanding of the defects which occur in such materials. Several methods exist by which this determination may be performed. In bulk, single-domain specimens, macroscopic techniques may be used, such as the different etching behavior, using the appropriate etchant, of surfaces with opposite polarity. X-ray measurements under conditions where Friedel’s law (which means that the intensity of reflections from planes of opposite polarity are indistinguishable) breaks down can also be used to determine the absolute polarity of bulk, single-domain specimens. On the microscopic scale, and particularly where antiphase boundaries (APBs), which separate regions of opposite polarity exist, electron microscopic techniques must be employed. Two techniques are commonly practised; the first [1], involves the dynamical interaction of hoLz lines which interfere constructively or destructively with the zero order reflection, depending on the crystal polarity. The crystal polarity can therefore be directly deduced from the relative intensity of these interactions.


2019 ◽  
Author(s):  
Minoru Maeda ◽  
Dipak Patel, Dr. ◽  
Hiroaki Kumakura, Dr. ◽  
Gen Nishijima, Dr. ◽  
Akiyoshi Matsumoto, Dr. ◽  
...  

1992 ◽  
Vol 57 (7) ◽  
pp. 1459-1465 ◽  
Author(s):  
Nobuyuki Harada ◽  
Tatsuo Sugioka ◽  
Hisashi Uda ◽  
Takeo Kuriki

The 8aR absolute stereochemistry of Wieland-Miescher ketone (-)-I was established by the X-ray structure analysis of its bis(4-bromobenzoate) derivatives (1R,6R,8aR)-(+)-IV and (1R,6S,8aR)-(-)-V. The absolute configuration of (-)-I was corroborated further by the application of the CD exciton chirality method to bis(4-bromobenzoates) (+)-IV and (-)-V.


1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


Sign in / Sign up

Export Citation Format

Share Document