Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism

2019 ◽  
Vol 161 ◽  
pp. 98-106 ◽  
Author(s):  
Roberto Berni ◽  
Marie Luyckx ◽  
Xuan Xu ◽  
Sylvain Legay ◽  
Kjell Sergeant ◽  
...  
2011 ◽  
Vol 156 (3) ◽  
pp. 1364-1374 ◽  
Author(s):  
Lucinda Denness ◽  
Joseph Francis McKenna ◽  
Cecile Segonzac ◽  
Alexandra Wormit ◽  
Priya Madhou ◽  
...  

2019 ◽  
Vol 46 (8) ◽  
pp. 702 ◽  
Author(s):  
Komal K. Sapara ◽  
Jackson Khedia ◽  
Parinita Agarwal ◽  
Doddabhimappa R. Gangapur ◽  
Pradeep K. Agarwal

Plants require different inorganic minerals in an appropriate amount for growth; however, imbalance can limit growth and productivity. Heavy metal accumulation causes toxicity and generates signalling crosstalk with reactive oxygen species (ROS), phytohormones, genes and transcription factors (TFs). The MYB (myeloblastoma) TFs participate in plant processes such as metabolism, development, cell fate, hormone pathways and responses to stresses. This is the first report towards characterisation of R2R3-type MYB TF, SbMYB15, from succulent halophyte Salicornia brachiata Roxb. for heavy metal tolerance. The SbMYB15 showed >5-fold increased transcript expression in the presence of CdCl2 and NiCl2•6H2O. The constitutive overexpression of SbMYB15 conferred cadmium and nickel tolerance in transgenic tobacco, with improved growth and chlorophyll content. Further, the transgenics showed reduced generation of reactive oxygen species (H2O2 and O2•−) as compared with the wild-type (WT) with both Cd2+ and Ni2+ stress. Transgenics also showed low uptake of heavy metal ions, increased scavenging activity of the antioxidative enzymes (CAT and SOD) and higher transcript expression of antioxidative genes (CAT1 and MnSOD). Thus, the present study signifies that SbMYB15 can be deployed for developing heavy metal tolerance in crop plants via genetic engineering.


2019 ◽  
Vol 103 (21-22) ◽  
pp. 8963-8975 ◽  
Author(s):  
Yanan Liu ◽  
Jing Lu ◽  
Jing Sun ◽  
Xiaoyu Zhu ◽  
Libang Zhou ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 403 ◽  
Author(s):  
Jiaye Wu ◽  
Yue Zhang ◽  
Ruizhi Hao ◽  
Yuan Cao ◽  
Xiaoyi Shan ◽  
...  

Lead is a heavy metal known to be toxic to both animals and plants. Nitric oxide (NO) was reported to participate in plant responses to different heavy metal stresses. In this study, we analyzed the function of exogenous and endogenous NO in Pb-induced toxicity in tobacco BY-2 cells, focusing on the role of NO in the generation of reactive oxygen species (ROS) as well as Pb2+ and Ca2+ fluxes using non-invasive micro-test technology (NMT). Pb treatment induced BY-2 cell death and rapid NO and ROS generation, while NO burst occurred earlier than ROS accumulation. The elimination of NO by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) resulted in a decrease of ROS, and the supplementation of NO by sodium nitroprusside (SNP) caused an increased accumulation of ROS. Furthermore, the addition of exogenous NO stimulated Pb2+ influx, thus promoting Pb uptake in cells and aggravating Pb-induced toxicity in cells, whereas the removal of endogenous NO produced the opposite effect. Moreover, we also found that both exogenous and endogenous NO enhanced Pb-induced Ca2+ effluxes and calcium homeostasis disorder. These results suggest that exogenous and endogenous NO played a critical regulatory role in BY-2 cell death induced by Pb stress by promoting Pb2+ influx and accumulation and disturbing calcium homeostasis.


2012 ◽  
Vol 2012 ◽  
pp. 1-37 ◽  
Author(s):  
Mohammad Anwar Hossain ◽  
Pukclai Piyatida ◽  
Jaime A. Teixeira da Silva ◽  
Masayuki Fujita

Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.


Sign in / Sign up

Export Citation Format

Share Document